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Non-Hermitian systems containing gain or loss commonly host exceptional point degeneracies, not the
diabolic points that, in Hermitian systems, play a key role in topological transitions and related phenomena.
Non-Hermitian Hamiltonians with parity-time symmetry can have real spectra but generally nonorthogonal
eigenstates, impeding the emergence of diabolic points. We introduce a pair of symmetries that induce not
only real eigenvalues but also pairwise eigenstate orthogonality. This allows non-Hermitian systems to host
Dirac points and other diabolic points. We construct non-Hermitian models exhibiting three exemplary
phenomena previously limited to the Hermitian regime: Haldane-type topological phase transition, Landau
levels without magnetic fields, and Weyl points. This establishes a new connection between non-Hermitian
physics and the rich phenomenology of diabolic points.
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Introduction.—If a Hamiltonian is Hermitian, its eigen-
states form an orthogonal basis, even at eigenvalue degen-
eracies or “diabolic points.” The presence of diabolic
points has important implications [1–3] as their dynamics
is described by elementary equations like the two-
dimensional (2D) Dirac equation [4–6], which have non-
trivial topological features. For instance, Dirac points in
2D band structures play a key role in transitions between
topologically distinct insulator phases [7,8]. Recently, there
has been much interest in degeneracies of non-Hermitian
systems (i.e., systems with gain and/or loss) [9,10]. Non-
Hermitian Hamiltonians typically have nonorthogonal
eigenvectors and degeneracies that are exceptional points
(EPs), where eigenvectors—not just eigenvalues—are
degenerate [11]. This includes the special class of parity-
time (PT) symmetric systems [12,13]. EPs give rise to
many striking physical effects with applications ranging
fromwaveguidemode conversion to optical sensing [12–21].
Despite the rich phenomenology of diabolic points in
Hermitian systems, little attention has been paid to realizing
them in the non-Hermitian regime, or the resulting implica-
tions. Previous works have shown only that diabolic points
of Hermitian systems usually do not survive into the non-
Hermitian regime [22–30]. Instead, they split into EPs [23]
or evolve into “exceptional rings” [22,26].
This Letter proposes a mechanism for non-Hermitian

systems to support symmetry-stabilized diabolic points,
allowing them to access the phenomenology of Dirac
points, Weyl points, and other topologically nontrivial
band degeneracies [2]. Extending the earlier insight that
non-Hermitian symmetries (e.g., PT symmetry) can sustain
real eigenvalues [12], we formulate a set of non-Hermitian
symmetries that provide not just real eigenvalues but also

orthogonal eigenstates. We construct a family of non-
Hermitian lattice models that satisfy these symmetries,
and hence show how to use gain and loss to realize three
exemplary phenomena normally restricted to the Hermitian
regime. The first is a phase transition between topologically
distinct 2D insulator phases, similar to the Haldane model
[7] (a foundational model for the theory of topological band
insulators [8]), except that the transition is driven by a gain
or loss degree of freedom rather than a Hermitian degree
of freedom like a lattice inversion-breaking parameter.
The second is the formation of Landau levels by synthetic
magnetic fields. It has previously been shown that Landau
levels can be induced via “strain engineering”—i.e.,
applying special distortions to a lattice hosting Dirac
points [31–33]. We show that the phenomenon can be
achieved via gain and loss, without Hermitian lattice
distortions. Finally, we demonstrate for the first time a
non-Hermitian 3D model exhibiting Weyl points [2,34],
with real bulk energies and Fermi arc surface states with
complex energies.
Our approach differs from the recent spate of efforts

[19,35–42] aimed at extending concepts of band geometry
and topology to the non-Hermitian regime by formulating
new topological invariants, topological classifications,
bulk-boundary correspondences, etc. The non-Hermitian
models we present acquire their interesting features not
from novel topological principles, but from Dirac and Weyl
points that act similarly (though not identically) to those in
Hermitian systems. This establishes a new way to connect
non-Hermitian physics with the physics of topological
band structures, and may be useful for designing devices
such as lasers that use gain or loss to achieve topological
transitions, Landau levels, etc.
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Non-Hermitian symmetries.—We first define the follow-
ing 4 × 4 matrices:

Σμ ¼
�
0 σμ

σμ 0

�
; μ ¼ 0; 1; 2; 3: ð1Þ

Here, σ0 denotes the 2 × 2 identity matrix and σj denotes
the Pauli matrices for j ¼ 1, 2, 3.
Let H be a 4 × 4 matrix, which needs not to be

Hermitian, which satisfies (i) the pseudo-Hermiticity
condition

Σ0HΣ0 ¼ H†; ð2Þ

and (ii) the anti-PT symmetry condition

fH;Σ3Σ1Tg ¼ 0; ð3Þ

where T is the complex conjugation operator.
Equation (2) implies that the eigenvalues ofH are real or

form complex conjugate pairs [43]. Equation (3) implies
that the eigenvectors form orthogonal pairs: if jψþi is an
eigenvector of H with eigenvalue Eþ, then jψ−i ¼
Σ1Σ3Tjψþi is an eigenvector with eigenvalue −E�þ, and
jψþi and jψ−i can be shown to be orthogonal [44]:

hψþjψ−i ¼
X4
n¼1

ðψnþÞ�ψn
− ¼ 0: ð4Þ

The proof of this uses the specific form of Σ1Σ3, and the
fact that hφjσ2Tjφi ¼ 0 for any two-component jφi.
With both symmetries present, the eigenvalues either

form the set fz; z�;−z;−z�g for nonreal z (the symmetry-
broken case), or two real pairs fE1;−E1g and fE2;−E2g
where the eigenvectors in each pair are orthogonal but
eigenvectors in different pairs are generally nonorthogonal
(the symmetry-unbroken case). The latter regime supports
the possibility of diabolic points.
A matrix satisfying Eqs. (2) and (3) has the form

H ¼
�
W Vþ
V− W†

�
; ð5Þ

W ¼
�
a b

b� −a�

�
; V� ¼

�
λ� c�
c�� −λ�

�
; ð6Þ

where a, b, c� ∈ C, and λ� ∈ R.
Lattice model.—Consider the honeycomb lattice shown

in Fig. 1(a). The lattice sites have complex on-site mass
terms; the real parts �m are indicated by thick and thin
outlines, and the imaginary parts �γ (i.e., on-site gain or
loss) are indicated by red and blue colors. Let the nearest-
neighbor intersite couplings be t1 ¼ 1, and take Haldane-
type next-nearest-neighbor couplings with magnitude t2

and phase −π=2 [7]. For γ ≠ 0, the lattice is non-Hermitian
and each unit cell has four sites, with lattice vectors
a1 ¼ ½1; 0� and a2 ¼ ½0; ffiffiffi

3
p �.

The k-space Hamiltonian satisfies Eqs. (5)–(6) with

a ¼ mþ iγ þ 2t2 sin k1;

b ¼ 2 cos ðk1=2Þ exp½ik2=ð2
ffiffiffi
3

p
Þ�;

λ� ¼ −4t2 sinðk1=2Þ cosð
ffiffiffi
3

p
k2=2Þ;

c� ¼ expð−ik2=
ffiffiffi
3

p
Þ: ð7Þ

Thus, Eqs. (2) and (3) hold for all k. If the next-nearest-
neighbor couplings are nonzero and have phases other than
�π=2, HðkÞ would not satisfy the symmetries.
The spectrum of HðkÞ can be derived analytically for

m ¼ t2 ¼ 0 [44]. For jγj < 1, all four eigenvalues are real
for jk2j < cos−1ð2γ2 − 1Þ= ffiffiffi

3
p

; in the symmetry-unbroken
domain, E ¼ 0 degeneracies occur at

Kτ ¼
�−2τθ

0

�
; where

�
τ ¼�1;

cos2θ ¼ ð−1− γ2Þ=2: ð8Þ

Figures 1(b)–1(c) show the band structure for m ¼ t2 ¼ 0
and γ ¼ 0.6, with the degeneracy points clearly visible.
There are two orthogonal eigenstates at each degeneracy

point, so these are diabolic points, not EPs. Figures 1(b)–1(c)
shows that the spectrum is linear near each degeneracy point,

(a)

(b) (c)

FIG. 1. (a) Schematic of the non-Hermitian lattice. Thick (thin)
circle outlines indicate positive (negative) real parts of the on-site
mass terms, �m, while red (blue) colors indicate positive
(negative) imaginary parts, �iγ. The nearest-neighbor coupling
is t1 ¼ 1. Orange arrows indicate the next-nearest-neighbor
couplings of ∓ it2 along (opposite to) the arrow; for clarity,
only couplings in one hexagon are depicted. Black arrows show
the elementary lattice vectors a1 and a2. (b)–(c) Complex band
structure for m ¼ 0 and γ ¼ 0.6.
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indicating that they are Dirac points. To prove this,
let q ¼ ðq1; q2Þ be the displacement relative to Kτ, let
jψi ¼ ½jφþi; jφ−i� be an eigenstate with energy E, and let
E,m, and t2 be of order q. To first order, jφ�i are found to be
governed by [44]

vðτηγσ1q1−σ2q2þMσ3ÞU�jφ�i¼EU�jφ�iþ �� � : ð9Þ

Here v ¼ ffiffiffi
3

p
=2 is the Dirac velocity, ηγ ¼ 2 sin θ=

ffiffiffi
3

p
is an

anisotropy parameter that goes to 1 when γ → 0, and

U� ¼ exp

�
� i
2
ðsin−1γÞσ1

�
; ð10Þ

M ¼ m − 6τt2 sin 2θ
2 cos θ

: ð11Þ

This result only applies to the two bands involved in the
degeneracy point. The other two do not satisfy E ∼OðqÞ, so
Eq. (9) does not apply.
Non-Hermitian gapped phases.—For t2 ≠ 0, the model

exhibits two types of gapped phases. If the term propor-
tional to τt2 in Eq. (11) dominates the term proportional to
m, the Dirac cones have opposite mass, and if the reverse is
true, the Dirac cones have the same mass. This is similar to
the Chern insulator and conventional insulator phases of
the Haldane model [7]. The phase transition is predicted
to occur at

jmj ¼ 3jt2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3þ γ2Þð1 − γ2Þ

q
: ð12Þ

At the transition point, there is an unpaired Dirac cone at
one of the Kτ points, similar to the transition described in
the Haldane model [7].
The phase diagram is shown in Fig. 2(a). The predicted

phase boundaries of Eq. (12) agree with those found by
numerically searching for band degeneracies, with the
discrepancies diminishing as t2 is further reduced. The shape
of the transition curve raises the interesting possibility of
driving a phase transition entirely via gain and loss. As
indicated by the points labeled b–d in Fig. 2(a), we can fix
nonzero values of m and t2 and increase γ from zero, and
thereby change the system from a non-Hermitian Chern
insulator (which reduces to a Hermitian Chern insulator
for γ ¼ 0) into a non-Hermitian conventional insulator
[Figs. 2(b)–2(d)].
The two gapped bulk phases are accompanied by edge

state behaviors similar to Hermitian Chern and conven-
tional insulators, as seen in Figs. 2(e)–2(g). The non-
Hermitian Chern insulator hosts edge states spanning the
gap, arising from the fact that the non-Hermitian k-space
Hamiltonian has effective 2D Dirac solutions to which the
standard topological bulk-edge correspondence applies. The
truncation of the real-space lattice breaks the symmetries
Eqs. (2)–(3), so that the edge state energies acquire sub-
stantial imaginary parts; these values depend on the choice of
boundary termination, and in the case of Figs. 2(e)–2(g)

(a) (b)

(e) (f) (g)

(c) (d)

FIG. 2. (a) Phase diagram of the 2D non-Hermitian lattice, featuring a non-Hermitian Chern insulator phase (white) and a non-
Hermitian conventional insulator phase (yellow). Black curves are phase boundaries computed by varyingm and γ for fixed t2 ¼ 0.1 and
searching numerically for band degeneracies. Blue dashes are analytical phase boundaries given by Eq. (12). Red dots indicate the points
corresponding to the (b)–(d) subplots. (b)–(d) Bulk band diagrams near one of the Kτ points. The lattice parameters are t2 ¼ 0.1,
m ¼ 0.35, and γ ¼ 0.846þ δγ where δγ ¼ −0.4 for (b), δγ ¼ 0 for (c), and δγ ¼ 0.1 for (d). All depicted eigenvalues have a zero
imaginary part. (e)–(g) Band diagrams for a strip infinite in x1 and 25 cells wide in x2, using the parameters of (b)–(d). Colors represent
the imaginary part of the energy eigenvalues.
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range from around -0.9 to 0.9. Formost of the bulk states, the
energies are almost exactly real.
Non-Hermitian pseudomagnetic fields.—The non-

Hermitian Dirac cones can experience pseudomagnetic
fields similar to those found in Hermitian lattices [31–
33], except that these pseudomagnetic fields can be induced
by gain and loss engineering rather than strain engineering.
For m ¼ t2 ¼ 0, the Dirac cones are ungapped; since their
k-space positions depend on γ [Eq. (8)], a spatial variation
in γ acts as a gauge field. By analogy, in Hermitian
graphenelike lattices a spatially uniform change in the
coupling terms shifts the Dirac points in k space, so a
nonuniform variation acts as a valley-specific gauge field
that induces Landau levels [31–33].
Figure 3(a) shows a lattice that is infinite in x1 and finite in

x2. Since the k-space displacement of the Dirac point is
proportional to θ [Eq. (8)], we vary γ so that θ½γðx2Þ� ¼
θ0 þ βx2. A theoretical analysis [44] shows that the system
hosts a zeroth Landau level (a flat band at E ¼ 0), and bands
similar to nonzero Landau levels. The computed band
diagram is shown in Figs. 3(b)–3(c). The zeroth Landau
level is clearly present, and the energies of the nonzero bands
also match theoretical predictions. Figure 3(d) plots the
wave function amplitude distributions for four eigenstates
labelled (i)–(iii) in Fig. 3(c). The eigenstates at (i) are two

fold degenerate, and consist of a bulk mode and an edge
mode; those at (ii) and (iii) are edge modes connected to the
zeroth Landau level. We emphasize that the flat bands are
generated by spatial variations in gain and loss,without strain
engineering [54,55] or a real magnetic field. We have
performed full-wave simulations demonstrating that gain
and loss controlled Laudau levels can be observed exper-
imentally as narrow peaks in transmission spectra [44].
They may be useful for slow light applications [56], and
for enhancing optical nonlinearity [57].
Non-Hermitian Weyl points.—The present framework

for generating diabolic points in non-Hermitian systems is
not limited to Dirac points in 2D lattices. We can formulate
a non-Hermitian 3D lattice model exhibiting Weyl points,
the simplest 3D diabolic points.
The lattice, shown in Fig. 4(a), is constructed by stacking

copies of the previous 2D lattice with m ¼ t2 ¼ 0. Along
x3, the positive (negative) interlayer couplings are indicated
by solid (dashed) lines. The lattice Hamiltonian then
satisfies Eqs. (5)–(6); for each k3, the interlayer couplings
act as m. For γ ¼ 0, this is a Weyl semimetal [45]. Upon
varying γ, the Weyl points shift in momentum space,
raising the possibility of gain or loss induced chiral
Landau levels [58]. Figure 4(b) shows the formation of
complex-valued Fermi arcs, whose real parts connect the
projections of the real-valued bulk Weyl cones.
Discussion.—We have shown that diabolic points can

occur in non-Hermitian systems by using symmetry con-
straints to enforce eigenstate orthogonality. This allows for
non-Hermitian systems that exhibit the rich phenomenol-
ogy of diabolic points, as illustrated by the three striking
examples presented above—topological transitions in two
dimensions, Landau levels without magnetic fields, and
Weyl points. These models are not the only ones that can
achieve such outcomes; it would be desirable to find a
general description of all such non-Hermitian models.
It will also be interesting to study the properties of other

(a)

(c)

(b)

(d)

FIG. 3. (a) Schematic of a 2D strip with gain and loss
distributed as θ ¼ θ0 þ βx2. The strip is infinite along x1. (b) Real
part of the band diagram for a strip 300 sites wide along x2, with
β ¼ 0.002. (c) Close-up of the band diagram near one of the
projected Kτ points, showing the formation of Landau levels.
Horizontal dashes indicate the energies for the lowest few Landau
levels derived from a continuum Dirac theory with a pseudo-
magnetic field. (d) Wave function amplitude distributions for the
four eigenstates indicated by (i)–(iii) in (c). The numbers below
indicate the energy eigenvalues.

(a) (b)

FIG. 4. (a) 3D non-Hermitian lattice hosting Weyl points. Solid
(dashed) lines indicate positive (negative) couplings �t3. (b) Sur-
face dispersion for a slab with periodic boundary conditions
along x1 and x3, and open boundaries along x2. The lattice
parameters are t1 ¼ t3 ¼ 1, t2 ¼ m ¼ 0, and γ ¼ 0.6.
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non-Hermitian diabolic points, such as quadratic band
degeneracies [59], type-II Weyl points [60], higher order
Weyl points [3,61], and nodal lines [62].
These theoretical ideas can be realized using a variety of

experimental platforms. We have performed full-wave
simulations of coupled acoustic resonator arrays [45–50]
with appropriate gain and loss, and found that such
structures can manifest the experimental signatures of gain
and loss induced Landau levels or Weyl points, consistent
with the above tight-binding models [44]. Laser-written
optical waveguide arrays [63] are another promising plat-
form; it has been shown that waveguide losses in these
arrays can be individually customized (to realize non-
Hermitian bulk topological transitions [64] or Weyl excep-
tional rings [26]), while T can be effectively broken by
twisting the waveguides [60,65]. Electric circuits, which
have been used to demonstrate various topological and
non-Hermitian models [66–68], can also be used to imple-
ment the models. Finally, it would be exciting to pursue
realizations using active nanophotonic platforms, such as
resonator arrays [69–72] with actively tunable gain or loss.
A longstanding obstacle to applying strain engineering
ideas [31] to photonics is the impracticality of mechanically
deforming photonic devices. The present scheme allows
for using active gain or loss to, for example, strongly alter
the photonic density of states on demand.
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