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The elastic properties of three-dimensional (3D) crystalline mechanical metamaterials, unlike those of
amorphous structures, are generally strongly anisotropic—even in the long-wavelength limit and for highly
symmetric crystals. Aiming at isotropic linear elastic wave propagation, we therefore study 3D periodic
approximants of 3D icosahedral quasicrystalline mechanical metamaterials consisting of uniaxial chiral
metarods. Considering the increasing order of the approximants, we approach nearly isotropic effective
speeds of sound and isotropic acoustical activity. The latter is directly connected to circularly polarized 3D
metamaterial chiral acoustic phonons—for all propagation directions in three dimensions.
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In aiming at effective-medium properties that go beyond
those of their ingredient materials, disordered and crystal-
line rationally designed composites called metamaterials
have been investigated extensively throughout recent years
[1], including optical [2–6], transport [1], and mechanical
properties [7–14]. Often, three-dimensional isotropic effec-
tive material properties are desirable in applications. For
instance, cubic crystal symmetry guarantees isotropic
behavior for electric conduction, particle diffusion, thermal
conduction, thermal expansion, and the long-wavelength
limit of optics [15]. This statement is not valid though for
transverse elastic waves in mechanics, for which cubic and
other crystal symmetries generally lead to very highly
anisotropic effective properties, even in the strict long-
wavelength limit [15–19].
Concerning isotropic elastic properties, this situation

leaves one with the possibilities of disordered, extraordi-
nary crystalline, and quasicrystalline architectures. So far,
certain isotropic elastic properties have been realized in
achiral disordered foams [20], which are effectively iso-
tropic on average, and in achiral extraordinary crystals
designed by topology optimization [21]. Following the
discovery of atomic 3D quasicrystals [22–28], isotropic
achiral elastic properties have also been obtained in 3D
quasicrystals [23,29]. However, isotropic elastic properties
related to chirality have not been demonstrated in any
system by any means so far.
Chiral mechanical metamaterials have emerged recently,

but their properties have been highly anisotropic [18,30,31].
Acoustical activity [32–34]—the mechanical counterpart of
the well-known phenomenon of optical activity [35]—is a
paradigm. Here, chiral phonons instead of the textbook
linearly polarized transverse acoustic (TA) phonons are the
eigenstates. An incident linear phonon polarization hence

rotates during phonon propagation. Therefore, an applica-
tion of acoustical activity is polarization mode conversion
from one transverse linear polarization to another transverse
one, e.g., to the orthogonal transverse one. However, in
cubic metamaterial crystals, acoustical activity has been
restricted to special propagation directions deviating from
the principal cubic axes by no more than just a few degrees
[19,36], and yet smaller solid angles around the cubic
space diagonals. The underlying reason is fundamental:
Acoustical activity is directly connected to circular eigen-
polarizations of the two lowest-frequency acoustic-phonon
branches, that is, to chiral phonons. To obtain circular
polarization, the axis of the phonon wave vector must at
least exhibit threefold rotational symmetry [37]—locally, or
at least on average. Furthermore, as the effects of chirality
generally tend to zero in the strict limit of large samples
(bulk) and long wavelengths [19,36], one must depart from
the strict long-wavelength limit to obtain appreciable effects
of acoustical activity in the bulk.
In this Letter, we investigate the possibility of obtaining

isotropic effective elastic behavior related to chirality by
introducing 3D quasicrystalline mechanical metamaterials.
Our rational design strategy starts with the cut-and-project

method [25,27,38] applied to a 6D simple-cubic lattice of
points with lattice constant a6D. The projection matrix
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acts onto a six-dimensional coordinate vector. The resulting
first three components represent the lattice points in 3D
physical space, while the other three components represent
a fictitious vector in internal space. According to the cut-
and-project method for quasicrystals [27] and periodic
approximants [25] (see Supplemental Material, Fig. S1
[39]), not all of the resulting points in 3D physical space are
accepted as lattice points of the 3D quasicrystal lattice.
Rather, only the points for which the internal vectors lie in a
certain acceptance domain are used (cf. upper row of
Fig. S2 [39]). The projection of the Wigner-Seitz cell of
the 6D simple-cubic lattice onto the internal space defines
this acceptance domain. We also include those lattice points
that lie exactly on the surface of the acceptance domain,
which, following [25], lie inside of the acceptance domain
if the acceptance domain is shifted by an infinitesimal
amount along the body diagonal direction. If the nonzero
entries of the matrix in Eq. (1) are chosen to be τ1¼τ2¼τ0,
with the golden ratio τ0 ¼ ð1þ ffiffiffi

5
p Þ=2, we obtain a 3D

icosahedral quasicrystal. If, instead, we set τ1 ¼ τ0 and τ2
to be a rational approximation of the golden ratio, τ2 ¼
q=p ¼ Fnþ1=Fn with the elements of the Fibonacci
series Fn ¼ 1, 1, 2, 3, 5, 8,... we obtain a 3D crystal.
Its three simple-cubic lattice vectors are ðaq=p; 0; 0Þ,
ð0; aq=p; 0Þ, and ð0; 0; aq=pÞ, with the lattice constant

aq=p¼2a6Dðqτ0þpÞ=
ffiffiffiffiffiffiffiffiffiffiffi

1þτ20
p

. For fractions q=p approach-
ing τ0, the 3D periodic cell becomes increasingly large and
the corresponding 3D crystal approaches a 3D icosahedral
quasicrystal. Considering the crystalline approximants is
important here because it allows to apply Floquet-Bloch’s
theorem for the calculation of the phonon band structures.
Alternatively, one can possibly solve the eigenvalue prob-
lem of an exact quasicrystal lattice by applying Floquet-
Bloch’s theorem in a higher dimension, and then obtain
the band structure through a similar cut-and-project
method [26]. Below, we will use q=p ¼ 1=1, 2=1, 3=2,
and 5=3. The corresponding architectures are illustrated in
Fig. S2 [39].
To arrive at a practical physical structure, we connect the

fictitious points derived from the previous paragraph by
ordinary elastic (that is, achiral) homogeneous cylindrical
rods in such a way that we obtain nearly isotropic phonon
dispersion relations and a negligibly small relative fre-
quency splitting between the lowest two bands in the
extended zone scheme for all phonon wave vectors. This
aspect is crucial because the frequency splitting between
left- and right-handed circularly polarized transverse modes
induced by chirality competes with any unwanted effective
anisotropy for the achiral case that also lifts the degeneracy
between the two orthogonally polarized TA branches. We
apply two rules. First, two lattice points are connected if the
corresponding 6D lattice points have been nearest neigh-
bors. The resulting architecture can be seen as being
composed of two types of rhombohedra, a thinner and a
thicker one [see enlargement in Fig. 1(a)]. This 3D

arrangement of touching rhombohedra is analogous to
the 2D aperiodic Penrose tilings [40]. All edges of the
rhombohedra have the same length [red in the inset of the
Fig. 1(a)]. Second, we additionally introduce segments
along the face diagonals (blue dotted) of both types of
rhombohedra and along the shortest body diagonal [dashed
gray; only one such segment occurs in the inset of Fig. 1(a)]

FIG. 1. (a) Illustration of the q=p ¼ 3=2 approximant of a 3D
icosahedral quasicrystalline metamaterial. The black points result
from the cut-and-project method. The enlarged area highlights
three types of segments between these points, i.e., the edges (red),
the face diagonals (blue dotted) of the two types of rhombohedra,
and the shortest body diagonals (gray dashed) of the thinner
rhombohedra. An animated version of the 3=2 approximant is
shown in Supplemental Material, Video 1 [39]. If we replace each
segment by either an achiral homogeneous cylindrical rod or by a
homogeneous uniaxial chiral rod, we approach an achiral or a
chiral 3D quasicrystal in the limit of large approximant order,
respectively. (b) Next, we approximate a homogeneous uniaxial
chiral rod with full rotational symmetry by the depicted chiral
metarod with threefold rotational symmetry. The metarod is
composed of ordinary achiral elastic rods. This approximation is
justified for wavelengths large compared to the length L.
(c) Resulting chiral architecture corresponding to the enlarged
region in (a). Throughout this Letter, we consider the following
normalized parameters: d=L ¼ 0.3, R=L ¼ 0.2, h=L ¼ 0.035,
r=a6D ¼ 0.01 (leading to the same rod radius for all rods in the
architecture for fixed a6D), and fixed a6D ¼ 100 μm, which is
amenable to state-of-the-art 3D laser printing of polymers [18].
Therefore, we use typical polymer parameters for all rods:
Young’s modulus E ¼ 4.18 GPa, Poisson’s ratio ν ¼ 0.4, and
mass density ρ ¼ 1.15 × 103 kg=m3.
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for the thinner rhombohedra. By increasing the local
coordination number, the face-diagonal segments play an
important role in decreasing the anisotropy-induced split-
ting between the two transverse bands along the principal
cubic directions. Likewise, the mentioned body diagonals
are critical to decrease the anisotropy-induced splitting for
wave vectors along the face diagonals of the 3D simple-
cubic translational lattice. Without these two additional
types of segments, the properties of the metamaterial
converge more slowly toward the isotropic case with
increasing approximant order. The mentioned three types
of links are highlighted by the red, dashed blue, and dashed
gray segments in Fig. 1(a). Their respective lengths are a6D,
a6D2=

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ τ20
p

, and a6D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6 − 3τ0
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ τ20
p

. Finally, each
segment is replaced by a cylindrical rod composed of an
ordinary achiral elastic material. Calculated band structures
and contours for these achiral approximants of 3D quasi-
crystals with rod radius r=a6D ¼ 0.01 are depicted in
Figs. S3 and S4, respectively, in the Supplemental
Material [39]. The discussed procedure leads to isotropic
achiral properties for increasing approximant order.
To achieve chiral metamaterial architectures supporting

isotropic chiral phonons, we can conceptually replace each
segment of the previous section [i.e., the red, dotted blue,
and dashed gray segments in Fig. 1(a)] by a homogeneous
uniaxial chiral rod to again obtain an approximant of a true
3D quasicrystal. Unfortunately, rods made of a homo-
geneous ordinary material with chiral properties do not
exist in reality. Therefore, we approximate and replace each
rod by the chiral metarod shown in Fig. 1(b). This metarod
is composed of ordinary homogeneous achiral elastic rods.
Its length L is scaled according to the segment length. In the
limit of vanishing R, the metarod becomes achiral. In the
limit of large R, neighboring metarods overlap. Our choice
is a trade-off. By virtue of the threefold rotational symmetry
of the metarod, and independent on its randomly chosen
azimuthal angle (see [39]), its effective properties in the
limit that the wavelength is large compared to L are those of
a homogeneous uniaxial chiral rod, supporting chiral
phonons propagating along the rod axis. Purely geomet-
rically speaking, the truss lattice itself [cf. Fig. 1(c)] does
not converge to a 3D quasicrystal.
For the q=p ¼ 1=1, 2=1, 3=2, and 5=3 approximants

considered below, this procedure leads to 32, 136, 576, and
2240pointswithin oneperiodic cell, respectively, and to 228,
920, 3398, and 16 768 chiral metarods within one periodic
cell, respectively. To deal with periodic cells containing so
many rods, we treat all rods by using Timoshenko-beam
theory and COMSOL Multiphysics® (MUMPS solver) [41]. This
approximation is justified because the rods are very slender
[r=a6D ¼ 0.01 in Fig. 1(b)]. For the metarod shown in
Fig. 1(b), a direct comparison to continuum mechanics is
provided in Fig. S5 [39].
In Figs. 2(a)–2(d), we plot the calculated phonon

dispersion relations along cubic face diagonals and principal

cubic directions for the q=p ¼ 1=1, 2=1, 3=2, and 5=3
approximants. The lowest two transverse phonon branches
and their backfolded parts are colored in red. The other, less
important, bands are colored in gray. A frequency splitting
between the two red transverse bands is clearly visible for
both propagation directions. This splitting can generally
have two different origins:Unwanted anisotropy andwanted
chirality. The anisotropy results in linearly or elliptically
polarized eigenmodes, whereas chirality alone ideally leads
to chiral phonons connected to circularly polarized eigenm-
odes. In the long-wavelength limit of a periodic structure, the
anisotropy-induced relative frequency splitting is indepen-
dent of the wave number jkj. In contrast, the chirality-
induced splitting should vanish ∝ jkj in the long-
wavelength limit, for which classical Cauchy elasticity
applies [15]. Therefore, we expect the splitting at jkj ¼ 0
to be anisotropy-induced only, which is unwanted. It is thus
instructive to plot the relative frequency splitting,
2ðf2 − f1Þ=ðf2 þ f1Þ, versus the phonon wave number
jkj in Figs. 2(e) and 2(f). The dips in the curves indicated
by the arrows occur on the edge of the first Brillouin zone for
the corresponding approximant periodic cell. Clearly, the

FIG. 2. Calculated phonon dispersion relations for approximant
architectures as illustrated in Fig. 1 for propagation along a cubic
face diagonal (ΓK direction, left) and a principal cubic direction
(ΓM direction, right). (a) q=p ¼ 1=1, (b) q=p ¼ 2=1,
(c) q=p ¼ 3=2, and (d) q=p ¼ 5=3. The lowest two transverse
bands and their backfolded parts are colored in red, the other less
important bands are plotted in gray. These data are shown in
magnified form in Fig. S6 [39]. (e) and (f) exhibit the relative
frequency splitting, 2ðf2 − f1Þ=ðf2 þ f1Þ, between the two
transverse bands. The colors for the four approximants are
indicated in the legend. (e) ΓK direction. (f) ΓM direction.
The results shown in Figs. 3 and 4 have been evaluated for the
wave number indicated by the dashed gray straight lines.
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relative frequency splitting at jkj ¼ 0 converges to zerowith
increasing approximant order [see Figs. 2(e) and 2(f)]. For
the highest approximant order numerically accessible to us,
i.e., q=p ¼ 5=3, the relative splitting for jkj ¼ 0 is about
0.3% for wave vectors along the cubic face diagonals [see
Fig. 2(e)] and less than 0.03% for the principal cubic
directions [see Fig. 2(f)]. As expected from micropolar
continuum elasticity [19], the chirality-induced relative
splitting converges toward a behavior ∝ jkj [see the purple
dashed straight line in Fig. 2(e)]. At the indicated gray line at
jkj ¼ 1=9ðπ=a6DÞ, chirality-induced splitting dominates
over the anisotropy-induced splitting and we expect chiral
phonon polarizations for the two sets of directions consid-
ered. Indeed, inspection of the corresponding eigenmodes
reveals circular phonon polarization [see Supplemental
Material, Fig. S7 and Videos 2 and 3 [39] ].
Yet more importantly, based on our entire design

process, we expect an isotropic chiral behavior of the
acoustic phonons in the limit of increasing approximant
order. To numerically test this conjecture, we visualize the
three-dimensional direction dependence of the eigenfre-
quencies f1 and f2 in Fig. 3 and of the eigenmode

polarizations in Fig. 4 [again for a fixed modulus of
the phonon wave vector of jkj ¼ 1=9ðπ=a6DÞ]. For the
q=p ¼ 5=3 approximant in Fig. 3, the frequency f1 varies
only between a minimum of 19.61 kHz and a maximum
of 19.66 kHz. f2 varies between 19.82 kHz and 19.86 kHz.
The corresponding relative frequency splitting 2ðf2 −
f1Þ=ðf2 þ f1Þ ≈ 1% is nearly isotropic, too. In the ideal
isotropic limit, f1, f2, and 2ðf2 − f1Þ=ðf2 þ f1Þ should be
constant. In Fig. 4, we visualize the eigenpolarizations of
the two transverse phonon bands. This is accomplished in
two different ways. First, we define the polarization degree
as the ratio ζ of the minor and major axes of the polarization
ellipse formed by the mean displacement vector of the
periodic cell versus time: ζ ¼ 1 corresponds to circular
polarization, ζ ¼ 0 to linear polarization, and values in
between to elliptical polarization. In the top row of Fig. 4,
we false-color code ζ onto the surface of a sphere in 3D
wave vector space. From this representation, one can see
that the ideal of constant ζ ¼ 1 is approached with
increasing approximant order. However, one cannot see
the orientation of the polarization ellipse. Therefore, we
depict in the bottom row of Fig. 4 the real-space trace of the
mean displacement vector, again for the two transverse
bands, i ¼ 1, 2. Obviously, very nearly circular polariza-
tion is achieved for all wave vector directions for the

FIG. 3. Calculated results for increasing order (from left to
right) of 3D quasicrystal approximants for jkj ¼ 1=9ðπ=a6DÞ
[cf. dashed gray lines in Figs. 2(e) and 2(f)]. (a) q=p ¼ 1=1,
(b) q=p ¼ 2=1, (c) q=p ¼ 3=2, and (d) q=p ¼ 5=3. In the first
two rows, we depict the direction dependence of the two
transverse phonon eigenfrequencies, f1 and f2 on a false-color
scale. In addition, the length of the vector from the origin to the
surface of the plot is proportional to the eigenfrequency for this
propagation direction. In the third row, we depict the relative
frequency splitting between the two transverse eigenfrequencies,
2ðf2 − f1Þ=ðf2 þ f1Þ, in the same manner.

FIG. 4. Calculated results for increasing order (from left to
right) of 3D quasicrystal approximants for jkj ¼ 1=9ðπ=a6DÞ
[cf. dashed gray lines in Figs. 2(e) and 2(f)]. (a) q=p ¼ 1=1,
(b) q=p ¼ 2=1, (c) q=p ¼ 3=2, and (d) q=p ¼ 5=3. The first row
exhibits the polarization degree, ζ, on a false-color scale
(cf. Fig. 3). ζ ¼ 0 corresponds to linear polarization and ζ ¼ 1
to circular polarization. The second row shows real-space
trajectories of the phonon displacement vector versus time (mean
over one periodic cell), i.e., a circle corresponds to circular
phonon polarization, an ellipse to elliptical polarization, and a
line to linear polarization. The center of each miniature on the
sphere indicates the corresponding wave vector direction in 3D.
The behavior of the two transverse phonon bands, with indices
i ¼ 1 and i ¼ 2, is shown in red and black, respectively. For the
5=3 approximant, chiral phonons are obtained for all phonon
propagation directions in 3D.
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highest q=p ¼ 5=3 approximant, whereas linear or ellip-
tical polarizations still dominate for the 1=1 and the 2=1
approximants. If the local coordination number is reduced
by considering only the red connections in Fig. 1(a), the
isotropic ideal is not yet reached for the 5=3 approximant
[cf. Fig. S8 [39] ].
In conclusion, we have presented a rational design of

truss-based chiral 3D mechanical metamaterials exhibiting
nearly isotropic chiral acoustic phonons (and as a special
limit also isotropic achiral acoustic phonons). Our design
approach is based on 3D quasicrystal approximants of
increasing order. Intuitively, for sufficiently large wave-
lengths and on average over the course of propagation
through the infinite 3D periodic approximant, the elastic
wave feels an isotropic chiral medium with complete
rotational symmetry around any wave propagation direc-
tion. This averaging should make the architecture robust
against disorder but comes at the price of reduced chiral
effects. Here, we achieve an isotropic relative frequency
splitting of 1%, which compares to maxima over 10% in
highly anisotropic cubic 3D metamaterial crystals [31].
Future experimental realizations of our proposal appear
possible based on advanced 3D additive manufacturing.
However, the more than ten thousand chiral metarods per
3D approximant periodic cell pose a formidable challenge.
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