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Using the recently introduced molecular dynamics lattice gas approach, we test fluctuations of coarse-
grained quantities. We show that as soon as the system can no longer be considered an ideal gas fluctuations
fail to diminish upon coarse graining as is usually expected. These results suggest that current approaches
to simulating fluctuating hydrodynamics may have to be augmented to achieve quantitative results for
systems with a nonideal equation of state. The molecular dynamics lattice gas method gives a guidance to
the exact nature of the fluctuation in such systems.
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Predicting fluctuations at small scales for coarse-grained
systems can be challenging [1–3]. Typically theoretical
predictions exist for fluctuations in the hydrodynamic (i.e.,
long wavelength) limit [4] that can be used to tune
fluctuation terms, which is the basis of the Langevin
approach to fluctuations [5]. Fluctuating terms in the
governing equations are usually assumed to be spatially
uncorrelated. The hydrodynamic behavior has to emerge
from the local fluctuations introduced into the system. To
complicate the situation fluctuations are often most relevant
at scales much smaller than the hydrodynamic length
scales. This makes it imperative to develop methods that
are able to reproduce correct fluctuations at much smaller
length scales [2]. It is generally not known what form the
small-scale fluctuations for such a coarse-grained system
should take. This is a general problem that arises in most
simulation contexts where fluctuations are important.
One obvious way to address this shortfall is to use

information from a microscopic model, e.g., a molecular
dynamics (MD) simulation, to measure the small-scale
fluctuations [1]. This information can then be used to tune
the fluctuating terms in a coarse-grained simulation method
[2]. In this Letter we show that it is possible to go a step
further and use a coarse-graining mapping between a MD
simulation and a coarse-grained mesoscopic model to
directly measure the correct fluctuations of the model
variables for different coarse-graining scales. Our results
indicate that fluctuations of the model variables can be
orders of magnitude larger than was previously expected.
In this Letter we focus on predictions for fluctuating

lattice Boltzmann approaches, although we stress that the
mapping approach is far more general and can be applied to
most other coarse-grained models. For the special case of
an ideal gas fluctuations are fairly well understood. This is
why this is usually taken as a starting point, e.g., for

fluctuating lattice Boltzmann methods [6–9]. For other
systems fluctuations arise from the discrete nature of the
representation as in lattice gases [4,10] or stochastic
rotation dynamics [11,12]. Other discrete versions like
dissipative particle dynamics [13–15] include tunable
fluctuating forces. For nonideal systems, however, it is
typically less clear what the correct fluctuations should
look like [16–19]. Because of this difficulty we developed a
direct mapping from molecular dynamics onto a lattice gas
(MDLG) [20] where fluctuations in a nonideal coarse-
grained system can be easily observed. In this Letter we
show the results of applying MDLG to analyzing equilib-
rium fluctuations at different densities of a system of
Lenard-Jones (LJ) particles.
The direct mapping between MD and a lattice gas leads

to an integer lattice gas. Integer lattice gases exist, but are
somewhat rare [10,21–25]. Blommel and Wagner showed
that an integer lattice gas can closely model the fluctuations
of an ideal gas [10]. Such lattice gases have occupation
numbers niðx; tÞ as their fundamental variables. They are
defined on lattice points x and are associated with lattice
velocities vi such that xþ vi is again a lattice position. The
evolution equation of a lattice gas can be written as

niðxþ vi; tþ ΔtÞ ¼ niðx; tÞ þ Ξi; ð1Þ

where the Ξi is the lattice gas collision operator. We also
define the number density N ¼ P

i ni. For the integer
lattice gas of Blommel and Wagner [10], the ni follow
the expectation for an ideal gas [26] and are Poisson
distributed,

PðniÞ ¼ expð−feqi Þðfeqi Þni=ni!; ð2Þ
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where feqi ¼ hnii. The number density N is similarly
Poisson distributed with average Neq ¼ P

i f
eq
i .

To examine the fluctuation behavior of a nonideal system
(as represented by a MD simulation) we employ the MDLG
approach. Here a lattice is superimposed on the MD
simulation and the displacement of particles from one
lattice cell to another a distance vi away during a time step
Δt is then identified with the lattice gas occupation number
ni. This provides us with a lattice gas that exactly represents
the underlying MD system [20]. Explicitly, if xjðtÞ is the
position of the jth particle at time t, we write

niðx; tÞ ¼
XM
j¼1

Δx½xjðtÞ�Δx−vi ½xjðt − ΔtÞ�; ð3Þ

whereΔy½x� is one if xα ∈ ½yα; yα þ Δx� and zero otherwise
for all coordinates α, and M is the total number of
particles.
We have previously shown [27] that a MDLG has an

equilibrium distribution equivalent to the standard lattice
Boltzmann equilibrium distributions when the combination
of the time step Δt and lattice size Δx gives

a2 ¼ hδðΔtÞ2i
dΔx2

≈ 0.18 ≈
1

6
; ð4Þ

where δðΔtÞ represents the displacement of aMD particle in
the simulation for a time interval ofΔt andd is the number of
spatial dimensions. For this choice the equilibrium distri-
bution of MDLG recovers the standard D2Q9 equilibrium
distribution of lattice Boltzmann methods for small velo-
cities [28]. To ensure comparability of results to fluctuating
lattice Boltzmann implementations [6,7,16,17], we restrict
ourselves to this value.
We now examine the equilibrium fluctuations of this

lattice gas. For a dilute gas we expect the assumptions of
ideal gas fluctuations to hold to good approximation. We
perform a molecular dynamics simulation with 99856
particles on a L2 ¼ 30002 lattice (measured in LJ units)
at a temperature of 50, also in LJ units, as in Ref. [20], to
prevent phase separation. The effective radius for excluded
volume of rc ≈ 0.75 [corresponding to 1=2kBT ¼ VðrcÞ]
implies a volume fraction of ϕ¼Mπr2c=ðLxLyÞ¼4.9×10−3

(see Supplemental Material for additional details [29]). For
this ϕ we find good agreement between the distribution of
the lattice gas occupation numbers and the Poisson dis-
tribution, as shown in Fig. 1 for two different lattice
spacings Δx.
For larger densities the total density will no longer be

Poisson distributed, but follow a narrower distribution. We
expect the distribution of the lattice gas occupation num-
bers ni to similarly deviate from the Poisson distribution.
We performed simulations for a denser system of volume
fraction of ϕ ¼ 0.49. The results shown in Fig. 2(a) show

the narrowing of the N distribution, but surprisingly the
distribution of rest particles (n0) appears little changed
whereas the distributions of particles moving to nearest
neighbors (n1) as well as diagonal neighbors (n5) is
much wider. We find similar results for three-dimensional
simulations, which are reported in the Supplemental
Material [29].
For each lattice spacing Δx there is a time step Δt

that corresponds to a2 ¼ 1=6. It is therefore essential
how the distributions depend on Δx, corresponding to
modeling the system at different scales. Increasing Δx will
increase the average number of particles per cell Neq. For
an ideal system the width of the Poisson distribution will
grow only as the square root ofNeq, making the distribution
more peaked for larger Neq. Therefore, for larger Δx
the importance of fluctuations declines. This classical
result is found for our the dilute system, as shown in
Fig. 1(b).
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FIG. 1. Distribution of the MDLG occupation numbers ni and
the total density (histograms) compared to the Poisson distribu-
tion (solid lines) for volume fraction ϕ ≈ 4.9 × 10−3 for different
lattice spacings (a) Δx ¼ 120 and (b) Δx ¼ 500. In (b) we also
sketched the numbering of the velocities.
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For the dense system of Fig. 2(b) the density does
indeed show a sharpening of the normalized width, as
one would expect. But the normalized width of the
distributions of the ni barely narrow. This is a counterin-
tuitive result, which suggests that the importance of
fluctuations for the ni does not diminish as 1=

ffiffiffiffiffi
M

p
with

increasing Δx.
Let us first consider how combining wider distributions

for the ni can lead to a narrower distribution of N. We
can write hðN − NeqÞ2i ¼ P

i

P
jhðni − feqi Þðnj − feqj Þi.

For an ideal system the distributions of the ni are indepen-
dent and hðni − feqi Þðnj − feqj Þi ¼ feqi δij. But for nonideal
systems the wider distributions for the ni requires that
at least for some i and j these correlations must become
quite negative to cancel the widening of the distributions
for i ¼ j.
We express this quantitatively in terms of the proba-

bilities of the particle displacements δj¼xjðtÞ−xjðt−ΔtÞ.
We obtain

hnii ¼
�XM

k¼1

Δx½xkðtÞ�Δx−vi ½xkðt − ΔtÞ�
�

¼ M
Z

dx1

Z
dδ1 � � �

Z
dδMPMðx1; δ1;…; xM; δNÞ

× Δxðx1ÞΔx−viðx1 − δ1Þ

¼ M
Z

dx1

Z
dδ1P1ðx1; δ1ÞΔxðx1ÞΔx−viðx1 − δ1Þ

¼ feqi ; ð5Þ
where we introduced the useful (but not very common)M-
particle distribution function for the displacements of
particles during a time step Δt. We see that the expectation
value of the distribution is entirely dependent on the one-
particle distribution function. This is the reason that Parsa
et al. [27] found that the equilibrium distribution depends
on the nondimensional mean squared displacement a2 only.
The probability for finding a specific occupation number

ni is then given by

PðniÞ ¼
Z

dx1

Z
dδ1 � � �

Z
dδMPMðx1; δ1;…; xM; δMÞ

× Θðni; fx1; δ1;…; xM; δMgÞ

¼
Z

dx1

Z
dδ1 � � �

Z
dδMPMðx1; δ1;…; xM; δMÞ

×

�
M

ni

�
Θðni; fx1; δ1;…; xn1 ; δn1gÞ; ð6Þ

where we define a binary flag that is one if we have the
occupation number niðxÞ as
Θðni;fx1; δ1;…; xM; δMgÞ

¼
�
1 if

P
M
k¼1 ΔxðxkÞΔx−viðxk − δkÞ≡ ni

0 else:
ð7Þ

In the special case of an ideal gas, where the M-particle
distribution factorizes,

PM;idðx1; δ1;…; δMÞ ¼
YM
k¼1

P1ðxk; δkÞ; ð8Þ

we have

PidðniÞ ¼
�
M

ni

��
feqi
M

�
ni
�
1 −

feqi
M

�
M−ni

≈ expð−feqi Þ ðf
eq
i Þni
ni!

; ð9Þ

where the last step is the familiar transition from the
binomial distribution to the Poisson distribution in the
limit of largeM. We can shed light on the expected width of
the distribution for the nonideal case by reducing the
expression to one for the two-particle distribution function:
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FIG. 2. Distribution of the MDLG occupation numbers ni and
the total density compared to the Poisson distribution for volume
fraction ϕ ≈ 0.49 and the lattice spacing is (a) Δx ¼ 12
and (b) Δx¼50.
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hniðxÞnjðyÞi ¼
�XM

k¼1

ΔxðxkÞΔx−viðxk − δkÞ
XM
l¼1

ΔyðxlÞΔy−vjðxl − δlÞ
�

¼
X
k;l

Z
dx1

Z
dδ1 � � �

Z
dδMPMðx1;δ1;…; xM;δMÞΔxðxkÞΔx−viðxk − δkÞΔyðxlÞΔy−vjðxl − δlÞ

¼ ðM2 −MÞ
Z

dx1

Z
dδ1

Z
dx2

Z
dδ2P2ðx1;δ1; x2;δ2ÞΔxðx1ÞΔx−viðx1 − δ1ÞΔyðx2ÞΔy−vjðx2 − δ2Þ

þM
Z

dx1

Z
dδ1P1ðx1;δ1ÞΔxðx1ÞΔx−viðx1 − δ1ÞΔyðx1ÞΔy−viðx1 − δ1Þ

¼ ðM2 −MÞ
Z

dx1

Z
dδ1

Z
dx2

Z
dδ2P2ðx1;δ1; x2;δ2ÞΔxðx1ÞΔx−viðx1 − δ1ÞΔyðx2ÞΔy−vjðx2 − δ2Þ

þ feqi δijδxy; ð10Þ

where, for an ideal gas, the two-particle probability
factorizes (8). With this, we obtain for an ideal gas

hniðxÞnjðyÞiid ¼ ð1 − 1=MÞfeqi feqj þ feqi δijδxy: ð11Þ

This is the result that one would expect for an independ-
ently binomial distributed ni. In the limit of a large system
with M → ∞ the 1=M can be neglected, and we obtain the
result predicted for a Poisson distributed ni.
For dilute gases the representation of the particles as

ideal particles works quite well. We define the scaled
squared width of the actual distribution as

Wii ¼ hðniðxÞ − feqi Þ2i=ðNeqfeqi Þ: ð12Þ

For a Poisson distribution this squared width will decrease
as 1=Neq. We plot

ffiffiffiffiffiffiffi
Wii

p
in Fig. 3 for an ideal gas, a real

dilute gas, and a dense gas as a function of the number of
average number particles per lattice site. The dilute gas
results agree quite well with a Poisson distribution up to
about 1000 particles per lattice site. After that the width
fails to decrease as fast as expected for an ideal gas. This
agrees with the results in Fig. 1.
For the dense gas the scaled width of the distribution

diverges from the ideal gas case at about 10 particles per
lattice site, and decays much more slowly for larger
numbers of particles. This implies that the importance of
fluctuations does no longer decay as 1=

ffiffiffiffiffiffiffiffi
Neq

p
. Therefore,

increasing the coarse graining by choosing a larger lattice
spacing Δx will not diminish fluctuations as rapidly as
would be expected in standard statistical mechanics. The
difference is striking: instead of decaying as ðNeqÞ−1=2, the
rest particles scale approximately as ðNeqÞ−1=4, and moving
particle density only as ðNeqÞ−1=8. This result may seem
counterintuitive: basic statistical mechanics would seem to
demand that if we continue to double the lattice spacingΔx,
the added components should eventually become indepen-
dent. This argument, however, misses the important point
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FIG. 3. Scaled distributions compared to that of a Poisson
distribution for the MDLG system (a) and a theoretical prediction
from the simplified two-particle displacement probability of
Eq. (16) (b). For larger coarse graining the width of the
distributions can be orders of magnitude wider than expected
for an ideal gas. This transition is enhanced for denser systems,
but appears for all densities. The theoretical result obtained by
numerical evaluation with Mathematica shows some numerical
wiggles, indicating that the software has some difficulties
evaluating the required four-dimensional integral.
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that we are keeping a2 ¼ 1=6, so that the time step Δt also
increases.
Let us consider the probability of the particle displace-

ments. Instantaneous velocities in equilibrium remain
uncorrelated,

P2ðx1; v1; x2; v2Þ ∝ Pðv1ÞPðv2Þgðjx1 − x2jÞ; ð13Þ

where gðrÞ is the pair correlation function. The same is
not true for displacement probabilities P2ðxk; δk; xl; δlÞ.
Displacements δk¼

RΔt
0 vkðtÞdt are not independent because

they depend on velocities at different times. For particles
sufficiently far apart, the displacement probability will
factorize:

lim
jx2−x1j→∞

P2ðx1; δ1; x2; δ2Þ ¼ P1ðx1; δ1ÞP1ðx2; δ2Þ: ð14Þ

It is well known that, particularly for longer times, the time
correlator for velocities decays only algebraically [30]. It is
reasonable to expect a similar effect for velocities of
particles that have a small spatial separation. A compre-
hensive numerical evaluation of these correlations is out-
side the scope of this Letter, but we did examine hδ1δ2i as a
function of the initial displacement of the particles jx2 − x1j
[31]. We found that this correlator does appear to decay
exponentially with a correlation length ξ ≈ hδ2i with a
prefactor that varies remarkably little with density (from 1
to 1.25 for the two extreme densities studied in this Letter).
As shown in the Supplemental Material [29], the

approximate relation

hδ1δ2iðjx1 − x2jÞ
hδ21i

≈ 2

�
Neq

Δx

�
1=2

exp

�
−
jx1 − x2j
ξΔx

�
ð15Þ

holds where ξ now varies slightly from 1 to 1.25 for our
density range. There are two caveats to this approximate
result. Firstly, at short distances the normalized correlation
of Eq. (15) has to be less than one. Secondly, the total
expectation of hδ1δ2i ¼ 0 because of momentum conser-
vation. In numerical experiments we find that for large Δx
there is actually a negative correlation, but the value of this
correlation function for large Δx is not of interest here.
Even with these caveats this result implies that the nonideal
part of the two-particle probability also decays exponen-
tially with correlation length ξ. We can now make the
following ansatz that will recover both the factorization of
Eq. (13) and the correlation of Eq. (15):

Pðx1; δ1; x2; δ2Þ

∝ gðrÞ exp
�
−
ðδ1 þ δ2Þ2
4σ2þðrÞ

�
exp

�
−
ðδ1 − δ2Þ2
4σ2−ðrÞ

�
; ð16Þ

where r ¼ jx1 − x2j and

σ�ðrÞ ¼ aΔx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hδ1δ2iðrÞ=hδ1δ1i

p
: ð17Þ

This is the simplest two-particle distribution function that
recovers both Eq. (14) and Eq. (15). We use numerical
integration to estimate the occupation number correlators
in Eq. (10). The numerical integration was performed using
Mathematica, using the rough two-particle correlation
function,

gðrÞ ¼ 1

2
tanh

�jx1 − x2j − rc
0.03

�
þ 1

2
; ð18Þ

and a Mathematica notebook is included in the
Supplemental Material [29]. The results of this numerical
integration are shown in Fig. 3, and it qualitatively recovers
the result of the direct simulations.
In conclusion, we have found that apparent equal-time

fluctuations in coarse-grained models contain time corre-
lations, which can significantly alter the scaling of the
fluctuations. It is well known that while equal-time fluc-
tuations in equilibrium systems decay exponentially, differ-
ent-time fluctuations only decay algebraically [30], so that
the contribution of different-time correlations can be
significant. This does not change the short-ranged nature
of these fluctuations, as can be seen in Eq. (15). But the
magnitude of fluctuations can be orders of magnitude larger
for the coarse-grained system variables when compared to
quantities that are obtained from equal-time correlators like
density or momentum fluctuations. This property of meso-
scopic methods has not been fully appreciated to date.
A long history of previous lattice gas approaches made a
Markov approximation, which implies that occupation
numbers were viewed as instantaneous quantities. Such a
view is in contrast to our lattice gas, which is a true coarse
graining of reality, as represented by a MD simulation, and
has fundamentally different properties. This interpretation
of a lattice gas as a coarse-grained model represents a shift
in perception, and we believe that our results will facilitate
the development of more realistic coarse-grained fluctuat-
ing methods.
Lastly, we would like to emphasize that the large

fluctuations observed in this Letter should not be thought
of as restricted to lattice gas approaches, but that these will
appear in all coarse-grained approaches, like those men-
tioned in the introduction.
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