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Observation of internal quantum dynamics relies on correlations between the system being observed
and the measurement apparatus. We propose using the c.m. degrees of freedom of atoms and molecules as a
“built-in” monitoring device for observing their internal dynamics in nonperturbative laser fields. We
illustrate the idea on the simplest model system—the hydrogen atom in an intense, tightly focused infrared
laser beam. To this end, we develop a numerically tractable, quantum-mechanical treatment of correlations
between internal and c.m. dynamics. We show that the transverse momentum records the time excited states
experience the field, allowing femtosecond reconstruction of the strong-field excitation process. The
ground state becomes weak-field seeking, an unambiguous and long sought-for signature of the Kramers-
Henneberger regime.
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The process of measurement in quantum mechanics
relies on establishing a correlation between an internal
quantum degree of freedom and a classical degree of
freedom of a measurement apparatus. Finding a suitable
classical outcome for a quantum system of interest is
particularly important for achieving optimal temporal
and spatial resolution. One classical degree of freedom
available to every gas-phase system is the translational
motion of its c.m., effectively attaching an individual
measurement apparatus to each atom or molecule. The
closely related prescription of using the c.m. motion as a
control device has been very successful in Mössbauer [1]
and other Doppler spectroscopies [2].
The coupling between the internal quantum dynamics

and the c.m. motion has not received much attention in
strong-field atomic, molecular, and optical science. In
intense visible and infrared fields, this coupling is a subtle
effect, intimately connected to the breakdown of the
dipole approximation. The fundamental importance of
nondipole effects have been recognized early on [3–5],
but only recently, enabled by refined theoretical and
experimental approaches, processes beyond the dipole
approximation are coming into focus. These include
radiation pressure [6], momentum distribution between
fragments upon ionization [7–9], chiral effects in high
harmonic generation [10], and atomic acceleration [11].
These effects have been investigated for very intense
(relativistic and near-relativistic) infrared (IR) fields
[12–15], as well as for shorter-wavelength fields which
are becoming available in the strong-field regime [16].
Because the c.m. coupling effects in strong-field physics

are small, numerical treatment of their contribution is
challenging. The standard technique appears to be the
treatment on full-product grids [17], which would require a

6D numerical simulation even for the simplest realistic
target—the hydrogen atom.
In this Letter, we show that adding an artificial trapping

potential, chosen not to disturb the c.m. motion, allows the
effective dimensionality of the problem to be reduced to
3D. This enables detailed computational investigation of
c.m. dynamics of strong-field processes. By using the c.m.
motion as the “built-in” measurement apparatus, we obtain
information on the dynamics of the excited-state formation
in intense IR fields. Using this technique, we provide the
first unambiguous, experimentally realizable method for
confirming the atomic ground state transiently entering the
Kramers-Henneberger (KH) regime in such fields.
In the KH (or acceleration) frame of reference, the laser

field dominates the electronic motion. For a laser field with
the peak electric field amplitude F0 and carrier frequency
ω, linearly polarized along the direction n̂, the lowest-order
Fourier component of the interaction potential in the KH
frame takes the form [18]

UKHðr⃗Þ ¼
1

2π

Z
2π

0

U(r⃗þ ⃗l0 sinðτÞ)dτ; ð1Þ

where U is the interaction potential in the laboratory frame
and the electron oscillation amplitude ⃗l0 ¼ n̂F0ω

−2.
If higher-order corrections to Eq. (1) can be neglected

for a given state, the system is said to be in the Kramers-
Henneberger regime. A remarkable property of the KH
states in low-frequency fields is that the effective polar-
izability rapidly approaches −ω−2 [19] with increasing ⃗l0
magnitude. As the result, a system in a KH state experi-
ences the same ponderomotive potential as a free electron.
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Kramers-Henneberger states have been postulated to
explain photoelectron spectra in strong fields [20], ioniza-
tion-free filamentation in gases [21], and ponderomotive
acceleration of neutral excited states [11,19,22–25].
Rydberg states readily satisfy the KH criteria in intense
IR fields, and are commonly accepted to be in the KH
regime in such fields. Because the KH states exist only
transiently in the presence of the intense field, their
unambiguous detection remains elusive [19]. The mecha-
nism of their formation in low-frequency fields, and for the
ground state even their existence, remains controversial
[26–30], despite extensive investigation [31–39].
In the simplest case of a one-electron, neutral atom,

the laboratory-frame Hamiltonian is given by [unless
noted otherwise, atomic units (ℏ ¼ m ¼ jej ¼ 1) are used
throughout]

Ĥ ¼ 1

2m1

(p̂1 þ A⃗ðr⃗1; tÞ)2 þ
1

2m2

(p̂2 − A⃗ðr⃗2; tÞ)2

þ vðχ⃗Þ þ uðR⃗Þ; ð2Þ

where p̂1;2 are the momentum operators of particles 1
(electron, charge q1 ¼ −1) and 2 (nucleus, q2 ¼ þ1),
A⃗ðr⃗; tÞ is the transverse (∇̂ · A⃗ ¼ 0) laboratory-space vector
potential, vðχ⃗Þ is the interaction potential between the
particles, and uðR⃗Þ is the c.m. trapping potential (in free
space, u ¼ 0). Finally, χ⃗ ¼ r⃗1 − r⃗2 and R⃗ ¼ ðm1=MÞr⃗1 þ
ðm2=MÞr⃗2, where M ¼ m1 þm2.
For systems of interest here, m1 ≪ m2. Introducing

μ ¼ m1m2=M and neglecting correction terms of the order
Oðμ=MÞ in the laser interaction, Eq. (2) simplifies to [40]

Ĥc:m: ¼ Ĥχ þ ĤR; ð3Þ

Ĥχ ¼
1

2μ
½p̂χ þ A⃗ðR⃗þ χ⃗; tÞ�2 þ vðχ⃗Þ; ð4Þ

ĤR ¼ 1

2M
p̂2
R þ uðR⃗Þ: ð5Þ

We have verified that the terms omitted in Eq. (3) do not
affect the results reported below [41].
The appropriate choice of the trapping potential uðR⃗Þ in

Eq. (5) and the shape of the initial c.m. wave packet are the
key ingredients of our treatment. The extent of the c.m.
wave packet should be on the order of the thermal de
Broglie wavelength of the target gas. The trapping potential
should not significantly disturb the targeted observables on
the time scale of the simulation. We have verified that the
parabolic trapping potential used presently satisfies these
requirements [41].
The general-case treatment of Eq. (3), which contains a

nonseparable coupling term through A⃗ðR⃗þ χ⃗; tÞ, remains a
formidable numerical task. For the short (subpicosecond)

and moderately intense IR fields, the c.m. displacements
remain small compared to both the characteristic electron
excursion and the laser-field wavelength. Therefore, we
seek solutions of the time-dependent Schrödinger equation
(TDSE) in the close-coupling form

Ψðχ⃗; R⃗; tÞ ¼
X
n

ϕnðχ⃗; tÞζnðR⃗Þ: ð6Þ

(From now on, we will omit arguments of ϕn, ζn and other
spatially and time-dependent quantities, as long as their
choice is unambiguous.) In Eq. (6), functions ζn are
orthonormalized, time-independent eigenfunctions of ĤR
[Eq. (5)] with eigenvalues ϵn. We assume that the potential
uðR⃗Þ in Eq. (5) is such that the set of the discrete solutions
fζng is complete.
Substituting the ansatz (6) into the TDSE for the

Hamiltonian (3) and projecting on each ζm on the left,
we obtain

i
∂
∂tϕm ¼ ðĥþ ϵmÞϕm þ

X
n

ĥmnϕn: ð7Þ

The explicit form of the one-electron operators ĥ and ĥmn is
given by the Eqs. (S2)–(S5) [41].
The system of coupled partial differential equations (7)

can be propagated in time at a cost comparable to that of a
standard, fixed-nuclei electronic TDSE, provided that the
number of the nuclear-coordinate channels is not excessive.
At the end of the pulse, the expectation of a c.m. observable
Ô, conditional on the internal degree of freedom being
described by a normalized wave function ϕaðχÞ, is given by

hÔia ¼
X
mn

hζmjÔjζnihϕmjϕaihϕajϕni: ð8Þ

Choosing Ô ¼ p̂R and Ô ¼ 1̂ yields the expectation of the
momentum and the state population, respectively. The c.m.
velocity of the atom in an internal state ϕa is then

va ¼
1

M
hp̂Ria
h1̂ia

: ð9Þ

We emphasize that the quantity va is determined from
the expectation values calculated after the field vanishes.
It does not depend on field gauge choice and defines a
physical observable.
We solve Eq. (7) for a three-dimensional hydrogen atom

(μ ¼ 1, M ¼ 1836), initially in the 1s electronic ground
state, exposed to a Gaussian pulse of beam waist w0 ¼
30236 a0, central frequency ω ¼ 0.057 (λ ≈ 799 nm), and
full-width-half-maximum τ0 ¼ 220 (≈5.32 fs). We choose,
for each Cartesian direction, the following convention:
x beam propagation, y transverse, and z polarization. For
further details of the numerical parameters, see [41].
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In a spatially nonuniform laser field, the excited atoms
acquire the velocity both in the forward and in the transverse
directions. The final c.m. velocity along laser polarization
remains negligible, as required by symmetry. We have
numerically verified that the forward velocity is insensitive
to moderate spatial-intensity gradients. As a result, we
discuss the two components of the velocity independently.
The forward (propagation-direction) component of

velocity is a consequence of the radiation pressure.
Strong-field excitation between hydrogenic levels with
the principal quantum numbers n and n0 transfers the
energy of ΔE ¼ 0.5ðn−2 − n0−2Þ from the laser field to
the atom. The corresponding momentum transfer is ΔE=c,
giving the forward velocity

Δvf ¼ ΔE
Mc

: ð10Þ

Because it is determined solely by the initial and the final
internal state of the atom, it contains no information on the
intervening dynamics. Our numerical results (See Figs. S1
and S2 [41]) are consistent with these expectations.
In the transverse direction, the atoms are accelerated

by the spatial gradient of the ponderomotive potential.
Classically, the final outward velocity of an initially sta-
tionary particle with dipole polarizability α entering the
field at time tb in the vicinity of the beam waist [x ¼ 0,
Eq. (S12)] is given by [41]

Δvt ¼
α

4M

Z
∞

tb

∂
∂rF

2
0ðr; tÞdt; ð11Þ

where F0ðr; tÞ is the envelope of the laser electric field
[see Eq. (S16)] [41]. The hydrogen ground state (α0 ¼ 4.5)
is expected to be accelerated toward stronger fields
(ð∂=∂rÞF2

0 < 0). Conversely, high-Rydberg states, which
exhibit the free-electron-like dynamical polarizabilities in
low-frequency fields (αf ≈ −ω−2 ≈ −308 at 799 nm), are
expected to move toward weaker fields.
A comparison of the calculated transverse velocity

[Eq. (9)] with the classical Eq. (11) for a state a known
polarizability allows us to infer tb—the time this state has
entered the field [41]. The integrand in Eq. (11) is negative,
so that tb is a monotonic function of Δvf and defines a
clock. Because αf , the low-frequency dynamical polar-
izability of the Rydberg states, is a cycle-averaged quantity
[41], the time resolution of this clock is ≈1=2 of the laser-
cycle duration (≈1.3 fs at 799 nm).
The composition of the Rydberg states populated by

strong-field excitation is sensitively affected by channel
closings [35,38,39]. Therefore, we expect a similar effect to
arise in the c.m. velocity spectroscopy. At 799 nm, channel
closings occur each 26 TWcm−2 (ΔIchannel ¼ 4ω3). For a
tightly focused beam used presently (w0 ¼ 2λ), in the
vicinity of the beam half-waist, a channel closing occurs

each 648 a0, or ≈34 nm. We consider the channel-closing
effects by repeating the calculations at seven, equidistant
transverse points spaced by 216 a0, placed around the beam
half-waist. We average the results equally among these
points. This volume averaging effectively suppresses res-
onance contributions, which are highly sensitive to the
intensity (See [41]).
The maximum gradient of the ponderomotive potential

occurs in the focal plane, w0=2 away from the focal spot.
We choose the point displaced in the y direction,
perpendicular to both the propagation and polarization
directions. The volume-averaged numerical results at this
point are illustrated in Fig. 1. The local peak intensity of the

FIG. 1. Hydrogen atom initially at the half-waist position. The
results are volume-averaged about the Cartesian point ð0; w0=2�
648; 0Þ. The local peak intensity is ≈607 TW cm−2. (a) Vector
potential at the initial position as a function of time. The upper
horizontal axis gives the fraction of the pulse duration τ0. The
blue dots on the time axis indicate the reconstructed excitation
times, see Fig. 2 for details. (b) Population of the individual
m ¼ 0 bound states after the end of the pulse. (c) Final c.m.
velocity in the outward transverse direction in meters per second
(1 atomic unit ≈2.19 × 106 ms−1). The right vertical axis gives
the time when a particle with α ¼ αf needs to enter the field to
reach the observed transverse velocity [Eq. (11)]. The connecting
lines in panels (b) and (c) are only a guide for the eye.
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field is ≈607 TW cm−2. The ionization is in the saturation
regime, with ≈9% of the population surviving in the 1s
ground state after the pulse. Additionally, ≈2.4% of the
atoms are excited to Rydberg states with n ≤ 6. Although
our simulation volume does not allow an accurate deter-
mination of excitation probabilities for higher Rydberg
states, we estimate that at least 2% of the atoms are left in
Rydberg states with n ≥ 7. Most of the excited states
possess a magnetic quantum number m ¼ 0, same as the
initial state.
For all electronic states in Fig. 1(c), other than the ground

state, the final transverse velocities are in the range of
12–20 ms−1. Solving Eq. (11) for tb yields the excitation
time. The results for the volume-averaged excitation time
reconstruction are presented in Fig. 2. In all cases, excited
states are formed within the laser cycle immediately
preceding the peak of the envelope. Although the excitation
clock defined by Eq. (11) does not offer true subcycle
resolution, it appears that the Rydberg states with low
principal quantum numbers tend to be populated later in the
laser pulse. This observation is consistent with the expect-
ations of the frustrated tunneling model [33]: formation of
the more compact, low-n states requires a tunnel exit point
closer to the nucleus and consequently higher electric field,
reached closer to the peak of the envelope.
We present further fixed-intensity results (Figs. S1–S3),

and explore the effects of the carrier-envelope phase (CEP,
Figs. S4 and S5), pulse duration (Figs. S6 and S7), and
nonparaxial effects arising in a tightly focused beam
(Figs. S8 and S9) in [41]. In all cases, we can successfully
assign the preferred excitation times based on the volume-
averaged c.m.-velocity spectra, confirming that the tech-
nique is universally applicable and experimentally realiz-
able. With a few exceptions, the reconstructed excitation
times are before the peak of the envelope, and tend to fall
within the same laser cycle. For longer pulses (See Figs. S6
and S7 in [41]), the preferred excitation times shift to earlier

times, before the peak of the envelope. However, they
remain clustered within one laser cycle.
Because the ponderomotive clock is not subcycle accu-

rate, we cannot associate the time of the excitation with the
specific phase of the field. It may be possible to improve
the time resolution of the excitation clock using multi-
color techniques, which have been successful for the
reconstruction of the ionization and recollision times in
high-harmonic spectroscopy [45,46]. Another possibility
involves breaking the symmetry of the interaction with a
static, external magnetic field. Both possibilities are cur-
rently under investigation.
One remarkable result seen in Fig. 1(c), which so far has

not been commented upon, is the behavior of the 1s ground
state. For the laser pulse in Fig. 1(a), it is weak-field
seeking, reaching the final outward velocity of ≈3.2 ms−1.
The low-field-seeking behavior of the 1s state persists for
other field parameters as well [41]. The final 1s velocity is
insensitive to channel-closing effects, indicating that it
arises due to adiabatic modification of the ground state,
rather than transient population of high-Rydberg states.
For the initial 1s state, tb → −∞, and Eq. (11) yields the

effective polarizability αeff, shown as a function of the
peak intensity of the laser pulse in Fig. 3. At intensities
below 50 TWcm−2, the numerical accuracy is insufficient
to determine the final c.m. velocity (Fig. S10 [41]). The
effective polarizability is negative, as opposed to þ4.5
expected for 1s in a weak field. It is characteristic of
entering the Kramers-Henneberger regime [19].
Observation of Kramers-Henneberger regime for an atomic
ground state in strong, low-frequency fields has been long
sought after, with no unambiguous detection thus far [19].
To summarize, we have developed a computationally

tractable quantum mechanical approach to correlations
between c.m. motion and internal electronic dynamics in

FIG. 2. Reconstructed excitation times (See text and Fig. 1
for the raw data). The vector potential at the Cartesian point
ð0; w0=2; 0Þ is given by the black solid line. Peak of the envelope
is at the time zero. Please note that the resolution of the envelope
clock is ≈1=2 laser cycle (≈1.3 fs).

FIG. 3. Effective polarizability αeff (green solid line; left
vertical axis) and survival probability (red dashed line; right
vertical axis) of the 1s ground state. The spatiotemporal field
profile is the same as in Fig. 1. The peak intensity I0 varies from
50 TWcm−2 to 2 PWcm−2. The horizontal axis shows the local
peak intensity at the initial, half-waist position of the atom
(Iloc ≈ 0.607 × I0).
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strong, nonuniform laser fields. Using the technique, we
demonstrate that the final c.m. velocity is sensitive to the
internal excitation dynamics. In particular, the transverse,
ponderomotive velocity is determined by the total time the
excited state spends in the field. In the absence of
resonances, it yields a measurement of the preferential
time of excitation. This procedure is robust to limited
volume averaging and can be applied for different CEP
values, for longer pulses, and for nonparaxial beams.
Finally, we demonstrate an unambiguous signature of
the atomic ground state entering the Kramers-
Henneberger regime in strong, low-frequency fields, which
has been long sought for. Taken together, our results
suggest that c.m.-velocity spectroscopy is a powerful
and, so far, overlooked tool for understanding strong-field
bound-state electronic dynamics on their natural timescale.

We expect that similar ideas, using a collective, nearly
classical degrees of freedom of a quantum system as an
intrinsic measurement device may become useful in other
contexts as well.
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