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We outline a proof of the stability of a massless neutral scalar field ψ in the background of a wide class of
four dimensional asymptotically flat rotating and “electrically charged” solutions of supergravity, and the
low energy limit of string theory, known as STU metrics. Despite their complexity, we find it possible to
circumvent the difficulties presented by the existence of ergo regions and the related phenomenon of
superradiance in the original metrics by following a strategy due to Whiting, and passing to an auxiliary
metric admitting an everywhere lightlike Killing field and constructing a scalar field ψ (related to a possible
unstable mode ψ by a nonlocal transformation) which satisfies the massless wave equation with respect to
the auxiliary metric. By contrast with the case for ψ, the associated energy density of ψ is not only
conserved but is also non-negative.
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Recent successes of the LIGO and Virgo gravitational
wave detectors [1] and of the event horizon telescope [2]
have triggered renewed interest in probing the near horizon
geometry of black holes and in testing the predictions of
general relativity against alternative theories of gravity. It is
important that such alternative theories (i) have a well-
posed initial value formulation, (ii) that proposed matter
fields have an energy momentum tensor satisfying sensible
energy conditions and, ideally, (iii) for any black hole
solutions obtained, that some minimum requirement of
stability holds. An example obtained from string theory and
that meets the first two of these requirements is the Kerr-
Sen metric [3], which generalized the Kerr-Newman
spacetime and has recently been the subject of much
investigation in relation to the recent results from obser-
vations with the event horizon telescope [2]. The super-
gravity-inspired STU metrics we study further generalize
the Kerr-Sen metric, and the stability result we obtain
applies equally well to it. STU theories are particularly
interesting because they are Lagrangian based [4] and their
matter sector separately satisfies the weak, strong, and
dominant energy conditions (see Ref. [5] for definitions) in
common with all ungauged supergravity theories [6]. Thus,
they have the potential to provide a genuine, physically
testable, mathematically consistent, viable alternative
against which to evaluate the predictions of general
relativity as a theory of gravity.
The stability of black hole spacetimes within general

relativity has been of long-standing interest since the work

of Regge and Wheeler [7] in 1957 and Zerilli [8] and
Vishveshwara [9] in 1970 on the Schwarzschild spacetime,
and the initial work of Press and Teukolsky [10,11] for the
Kerr black hole in 1973. These papers were all concerned
with mode stability: whether small perturbations can grow
exponentially. A deeper analysis is required to establish
whether linear perturbations decay generically at late times
[12], and whether linear perturbations can excite nonlinear
growth [13]. A subtlety that arises for black holes is that
even if the solution settles down to a stationary final state, it
may not have the same mass and angular momentum as the
solution around which one is linearizing. The final solution
should, however, by the no-hair theorems, be a regular
stationary black hole within the space of solutions of the
theory under consideration.
When one considers the stability of the rotating Kerr

solution [14], one encounters the difficulty of dealing with
superradiance. Two key steps in understanding the stability
of the Kerr solution were the separation of the relevant
perturbation equations [15] and the construction, using
properties of the resultant confluent Heun equations, of a
modified wave equation admitting a conserved positive
energy [16]. The latter has played an important role in
recent advances in this subject [17,18].
The extension to the rotating electrically charged Kerr-

Newman solution has been impeded by the lack of
separation results analogous to those of Ref. [15]. For
the special case of an electrically neutral massless scalar
wave equation on a fixed Kerr-Newman background, see
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Refs. [19,20]. Very recently, the Teukolsky equations for
Kerr-Newman spacetime have been obtained [21] as a first,
very preliminary, step towards being able to discuss the
stability question in this difficult case.
The main purpose of the present Letter is to report on the

mode stability of the massless wave equation on the fixed
background of a class of four-dimensional four-charged
rotating black hole solutions [4,22] of ungauged super-
gravity theory known as “STU black holes,” which are
generalizations of the Kerr-Newman black hole, admitting
a separation of variables [23]. STU supergravity is a
consistent truncation of maximal four-dimensional super-
gravity, having four Abelian gauge fields, and the four
“charges” of the black holes we consider here are carried by
these fields. If the charges are set equal, the solution
reduces to the Kerr-Newman black hole [24]. The four-
dimensional supergravity can be embedded within the low-
energy limit of string theory, by means of a dimensional
reduction on a 6-torus. For an account of the existence of
Killing Staeckel and Killing-Yano tensors extending known
results in the Kerr case, see Refs. [24,25] and [26].
In previous work [27,28], three of us have advocated the

use of these metrics as a foil to assess the accuracy with
which astronomical observations of black holes can con-
firm that the metric is given by that of Kerr [14]. Quite apart
from the STU black holes being solutions within super-
gravity or string theory, they have the merit that one can
view them as a parameterized family of generalizations of
the Kerr black hole for which, ungauged, their accompany-
ing matter sector obeys the dominant, strong and weak
energy conditions of general relativity. A further distinct
advantage they have over many rival versions of modified
gravity is that STU metrics can be obtained from a
Lagrangian and so have a Hamiltonian and an initial-value
formulation. To be effective as a foil, it is vital to under-
stand whether STU black holes are stable, failing which
they could not become the end points of gravitational wave
emission arising from the inspiral and merger of massive
black holes, as have recently been observed by the LIGO
and Virgo Collaborations, starting with GW150914 in 2015
[1]. A similar reliance on stability applies for the use of
STU black holes (in particular the special case of the Sen
[3] black hole) in relation to observations made by the event
horizon telescope [2].
An outgoing mode solution is one that has no support on

the past horizon or at past null infinity. With the separation
of variables given in Eq. (6), an outgoing mode with
complex ω would grow exponentially in time if Imω > 0,
and would therefore be considered “unstable.” Outgoing
modes where ω is real and not equal to 0, if they exist,
would also be considered unstable, since they would
present an obstacle to proving decay at late times
(ω ¼ 0 is discussed further below). Outgoing modes with
Imω < 0 decay exponentially in time, and are “quasinor-
mal modes.” We shall follow the strategy employed for the

Kerr metric in Ref. [16]. We start with the separated
solutions of the massless wave equation □gψ ¼ 0, where
□g is the covariant d’Alembertian of the stationary STU
black hole metric g, and then construct a new function Ψ
satisfying □ĝΨ ¼ 0, where □ĝ is the covariant
d’Alembertian of an auxiliary metric ĝ with a null
Killing vector field Kμ.
By contrast with ψ and the physical metric gμν, the

conserved energy current Jμ ¼ −KνTμ
ν has a positive

energy density, J0 ≥ 0, where Tμν ¼ ∂μΨ∂νΨ −
1
2
ĝμνĝρσ∂ρΨ∂σΨ is the energy-momentum tensor with

respect to the auxiliary metric ĝμν. In Ref. [16] it was
shown that establishing positivity of an energy functional,
albeit with respect to the auxiliary metric ĝμν, of the
auxiliary field Ψ suffices to show mode stability of the
original massless scalar field ψ . The relationship between
Ψ and ψ is nonlocal, being effected by means of a pair of
certain integral and differential transforms, chosen so that
an unstable mode for ψ maps to an unstable mode for Ψ.
For the auxiliary metric dŝ2 ¼ ĝμνdxμdxν, we have

dŝ2 ¼ Ω2

�
dr2

Δ
þ dθ2

�
þ ðPþ a2cos2θÞΔsin2θ

a2Ω2
dϕ2

−
2Δ1=2 sin θ

a
dtdϕ; ð1Þ

where Δ is given in Eq. (4), and P is given in Eq. (17), and
Ω is given in Eq. (23). The function P is manifestly positive
for all r ≥ rþ (the radius of the outer horizon). This implies
that with respect to the auxiliary metric ĝμν the azimuthal
Killing vector ∂ϕ is everywhere spacelike, and the Killing
vector ∂t is everywhere lightlike. By contrast with respect
to the physical STU metric gμν the Killing vector ∂t is
timelike outside the ergosphere upon which it becomes null
and spacelike within the ergosphere.
The fact that ∂t is lightlike with respect to ĝμν and the fact

that Tμν satisfies the dominant energy condition, implies the
positivity of the energy density J0. Specifically, from Jμ ¼
−KνTμ

ν and K ¼ ∂t, the total energy
R ffiffiffiffiffiffi

−ĝ
p

d3xJ0 is

1

2a

Z
sin θdrdθdϕ½ðPþ a2cos2θÞð∂tΨÞ2

þ Δð∂rΨÞ2 þ ð∂θΨÞ2�; ð2Þ

which is manifestly positive, reducing to that for the Kerr
metric in Ref. [16] if the “electric charges” are set to zero.
We shall now present a brief summary of the key steps in

the derivation of the auxiliary metric (1). Further details
will be given in a longer paper to follow [29].
The four-charge rotating STU black hole solution was

obtained in Ref. [22]; a convenient form for the metric
is [4]:
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ds2 ¼ −
ρ2 − 2μr

W
ðdtþ ω̄dϕÞ2

þW

�
dr2

Δ
þ dθ2 þ Δsin2θdϕ2

ρ2 − 2 μr

�
; ð3Þ

where

W2 ¼ r1r2r3r4 þ a4cos4θ þ ½2r2 þ 2 μrΣ2
i þ 8 μrΠcΠs

− 4μ2ðΣ2
ijk þ 2Π2

sÞ�a2cos2θ;
ri ¼ rþ 2μs2i ; ρ2 ¼ r2 þ a2cos2θ;

Δ ¼ r2 − 2 μrþ a2 ¼ ðr − r−Þðr − rþÞ;

ω̄ ¼ 2 μa½rΠc − ðr − 2μÞΠs�sin2θ
ρ2 − 2 μr

;

ci ¼ cosh δi; si ¼ sinh δi;

Πc ¼ c1c2c3c4; Πs ¼ s1s2s3s4;

Σ2
i ¼ s21 þ s22 þ s23 þ s24; Σ2

ijk ¼
X
i<j<k

s2i s
2
js

2
k: ð4Þ

Changing variables from r and θ to

x ¼ r − r−
rþ − r−

; y ¼ 1

2
ðcos θ þ 1Þ; ð5Þ

the massless scalar wave equation □ψ ¼ 0 can be sepa-
rated by writing

ψ ¼ e−iωteimϕ XðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx − 1Þp YðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

yðy − 1Þp ; ð6Þ

with XðxÞ and YðyÞ satisfying

X00ðxÞ
XðxÞ þ Vx ¼ 0;

Y 00ðyÞ
YðyÞ þ Vy ¼ 0; ð7Þ

where a prime denotes a derivative with respect to the
argument, and

Vx ¼ −α̃2 þ α̃ κ̃þλ̃þ 1
2
κ̃2

x
þ

1
4
− β̃2

x2

þ α̃ κ̃−λ̃ − 1
2
κ̃2

x − 1
þ

1
4
− γ̃2

ðx − 1Þ2 ; ð8Þ

Vy ¼ −α2 þ ακ þ λþ 1
2
κ2

y
þ

1
4
− β2

y2

þ ακ − λ − 1
2
κ2

y − 1
þ

1
4
− γ2

ðy − 1Þ2 : ð9Þ

The constants in the potential Vx are given by

α̃ ¼ iωðrþ − r−Þ; κ̃ ¼ −
i
4
ωðrþ þ r−Þ

X
i

cosh 2δi;

β̃ ¼ i½am − ωðrþ þ r−ÞðΠcr− þ ΠsrþÞ�
rþ − r−

;

γ̃ ¼ −
i½am − ωðrþ þ r−ÞðΠcrþ þ Πsr−Þ�

rþ − r−
;

λ̃ ¼ 1

2
þ α̃ðγ̃ − β̃Þ − 1

2
ðγ̃ − β̃Þ2 þ λT þ ν; ð10Þ

(from which ωþ ¼ a=½ðrþ þ r−ÞðΠcrþ þ Πsr−Þ�) with

ν ¼ ω2ðrþ þ r−Þ2
32

�X
i

c̃2i − 6
X
i<j

c̃ic̃j

þ 16ðΠc − Πs − 1Þ2 þ 32ð2Πc − 1Þ
�
; ð11Þ

where c̃i ¼ cosh 2δi; and in Vy we have

α ¼ 2aω; κ ¼ 0; β ¼ −
m
2
; γ ¼ m

2
;

λ ¼ 1

2
þ αðγ − βÞ − 1

2
ðγ − βÞ2 þ λT: ð12Þ

In these expressions, λT is the analogue of the separation
constant employed in Ref. [15] in the case of the Kerr
metric. Note that ω ¼ mωþ is the superradiant threshold,
where γ̃ in Eq. (10) changes sign.
An unstable mode would have

XðxÞ ∼
�
eα̃xx−κ̃ as x → ∞;

ðx − 1Þ−γ̃ as x → 1:
ð13Þ

Following the strategy in Ref. [16], we define a new radial
function h̃ðxÞ by means of the integral transform
(Imω > 0),

h̃ðxÞ ¼ eα̂xxβ̂ðx − 1Þγ̂

×
Z

∞

1

dze2α̃xze−α̃zz−
1
2
−β̃ðz − 1Þ−1

2
−γ̃XðzÞ; ð14Þ

where

α̂ ¼ −α̃; κ̂ ¼ −β̃ þ γ̃; β̂ ¼ −
1

2
ðβ̃ þ γ̃ þ κ̃Þ;

γ̂ ¼ −
1

2
ðβ̃ þ γ̃ − κ̃Þ; λ̂ ¼ λ̃: ð15Þ

The function X̃ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx − 1Þp

h̃ðxÞ satisfies the same
equation as does XðxÞ in Eq. (7), except that Vx in Eq. (9) is
now given by replacing the tilded constants by the hatted
ones given in Eq. (15) [16], and has been chosen so that an
unstable mode for XðxÞmaps to an unstable mode for X̃ðxÞ.
With these transformations, the radial equation becomes
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xðx − 1Þh̃00 þ ð2x − 1Þh̃0
þ ½ω2PðxÞ þ ω2a2 − 4amωx − λT �h̃ ¼ 0; ð16Þ

where

PðxÞ ¼ ðrþ þ r−Þ2
�ðPic̃i − 4Πc þ 4ΠsÞ2ðx − 1Þ

64x

þ ðPic̃i þ 4Πc − 4ΠsÞ2x
64ðx − 1Þ þ 2ðΠc þ ΠsÞx

�

þ ðrþ − r−Þ2xðx − 1Þ − a2; ð17Þ

and the function PðxÞ is manifestly positive for all x ≥ 1.
In a similar vein, one may introduce an angular function

vðyÞ, this time related to YðyÞ via a differential transform,
with ỸðyÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

yðy − 1Þp
vðyÞ satisfying the same equation

as does YðyÞ in Eq. (7), except that Vy in Eq. (9) is now
given by replacing the constants α, β, γ, κ by barred ones,
given by [16] (Note: λ is unaffected)

ᾱ¼α; κ̄¼−βþγ; β̄¼1

2
nþβ; γ̄¼1

2
n−γ; ð18Þ

where the integer n is equal to jmj. Taking m, without loss
of generality, to be non-negative, v satisfies

yðy − 1Þv00 þ ð2y − 1Þv0
þ ½4a2ω2yð1 − yÞ þ 4amωðy − 1Þ − λT �v ¼ 0: ð19Þ

We now perform an “unseparation of variables,” defining
a wave function Ψðt; x; y;ϕÞ ¼ e−iωtþimϕh̃ðxÞvðyÞ.
Expressed in terms of the original radial and angular
variables r and θ by using (5),Ψ satisfies the wave equation

�
∂rðΔ∂rÞ þ

1

sin θ
∂θðsin θ∂θÞ − ðPþ a2cos2θÞ∂2

t

− 2a

�
cos θ þ r − μ

ϵ0μ

�
∂t∂ϕ

�
Ψ ¼ 0; ð20Þ

where ϵ0 ¼ ðrþ − r−Þ=ðrþ þ r−Þ. (Note: λT cancels
between the radial and angular terms in the unseparation
process.) This generalizes the result given in Ref. [16] for
the Kerr metric, the difference being the replacement of the
function f in that paper by the function P in Eq. (20). By
pursuing techniques similar to those used in
Refs. [18,30,31], our results for Imω > 0 extend to real
ω ≠ 0. For ω ¼ 0, ψ in Eq. (6) becomes time independent.
The radial equation then reverts to the hypergeometric
equation, with three regular singular points r−, rþ, and ∞,
and requires a separate discussion. In the Kerr limit,
Teukolsky [15] has shown that this equation does not have
solutions which are well behaved both at the horizon and at
infinity (see also Ref. [11]). By a similar method, that
conclusion also holds in the present case.

One can read off, up to an arbitrary conformal scaling, an
inverse metric ĝμν such that the terms involving two
derivatives of Ψ in Eq. (20) are of the form ĝμν∂μ∂νΨ.
Thus, the nonzero components are of the form

ĝrr ¼ ΔΩ−2; ĝθθ ¼ Ω−2;

ĝtt ¼ −ðPþ a2cos2θÞΩ−2;

ĝtϕ ¼ −a
�
cos θ þ r − μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 − a2
p

�
Ω−2: ð21Þ

One may then look for a choice of the conformal factor
such that the remaining terms in the wave equation (20) are
reproduced also; that is, that a multiple of Eq. (20) may be
written as the covariant d’Alembertian

1ffiffiffiffiffiffi
−ĝ

p ∂μð
ffiffiffiffiffiffi
−ĝ

p
ĝμν∂νΨÞ ¼ 0: ð22Þ

That an Ω exists is nontrivial, since the same function Ω
must produce both the ð∂rΔÞ∂rΨ term and the cot θ∂θΨ
term. In fact, an Ω does exist, and can be given by

Ω2 ¼ Δ1=2

�
cos θ þ r − μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 − a2
p

�
sin θ: ð23Þ

The auxiliary metric itself is given in Eq. (1). An extended
version of our work presented here is in preparation [29].
To appreciate more fully the complexity of the STU

metrics, it is necessary to expand completely out the
compact expressions presented in Eqs. (4) and (17), and
used in Eqs. (3) and (20). It should be recognized that any
proof of stability for STU metrics may require a process at
least as complicated as that which has only been introduced
this year by Ref. [21] for the Kerr-Newman problem, in a
spacetime that was discovered over 50 years ago.
Hopefully, results will be quicker in the STU case, with
our results providing the first hint of encouragement that
similar such gargantuan efforts as in Ref. [21] may, in the
end, be worthwhile for STU metrics too.
In conclusion, we have provided a proof of mode

stability for a massless scalar field ψ in the background
of a wide class of four-dimensional asymptotically flat
rotating and “electrically charged” supergravity black
holes, whose energy-momentum tensor satisfies the dom-
inant energy condition in general relativity. We handled the
difficulties presented by the existence of ergo regions in the
original metrics by passing to an auxiliary metric admitting
an everywhere lightlike Killing field and constructing a
scalar field Ψ related to ψ by a nonlocal integral trans-
formation which satisfies the massless wave equation with
respect to the auxiliary metric. We find that the associated
energy density of Ψ is not only conserved but is also non-
negative. Our results open the way to establishing decay
estimates as obtained in Ref. [17].
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