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We study the dynamics of entanglement in the scaling limit of the Ising spin chain in the presence of both
a longitudinal and a transverse field. We present analytical results for the quench of the longitudinal field in
the critical transverse field which go beyond current lattice integrability techniques. We test these results
against a numerical simulation on the corresponding lattice model finding extremely good agreement. We
show that the presence of bound states in the spectrum of the field theory leads to oscillations in the
entanglement entropy and suppresses its linear growth on the time scales accessible to numerical
simulations. For small quenches, we exactly determine these oscillatory contributions and demonstrate that
their presence follows from symmetry arguments. For the quench of the transverse field at zero longitudinal
field, we prove that the Rényi entropies are exactly proportional to the logarithm of the exponential of a
time-dependent function, whose leading large-time behavior is linear, hence, entanglement grows linearly.
We conclude that, in the scaling limit, linear growth and oscillations in the entanglement entropies can not
be simply seen as consequences of integrability and its breaking, respectively.
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Introduction.—Over the past two decades, one-dimen-
sional many-body quantum systems far from equilibrium
have become ubiquitous laboratories for scrutinizing
fundamental aspects of statistical mechanics. Out-of-
equilibrium protocols featuring unitary dynamics, such as
quantum quenches, have been commonly employed to test
relaxation and thermalization hypotheses [1,2] in experi-
mentally realizable setups [3–6]. A powerful theoretical
device that tests whether a physical system can eventually
approach equilibrium is represented by its entanglement
dynamics [7]. In 1þ 1 dimensions, the linear-in-time
increase of the entanglement entropies is a signature that
local observables relax exponentially fast [8–10] and ther-
malize [11,12]. This characteristic growth has been further
conjectured to be a generic feature of integrablemodels [13],
where it has been analyzed within a quasiparticle picture,
inspired by conformal field theory [7] and free fermion
calculations [14]. In such a framework, entangled quasipar-
ticle pairs propagate freely in space-time and generate
linearly growing entropies. Minimal models, with random
unitary dynamics, that show analogous entanglement
growth, have also been studied [15,16] in connection with
quantum chaos [17,18] and nonintegrable systems.
Nonetheless, there exists a vast class of one-dimensional

systems that escape this paradigm and fail to relax at large
times after the quench. They have been observed both in
earlier studies [19] and in actual recent experiments [20],

see, also, [21]. Within a qualitative quasiparticle picture
[22], absence of thermalization has been associated with
integrability breaking interactions and confinement.
Numerical studies in the Ising spin chain [22] and its
scaling limit [23–26] indicated that, in the presence of a
longitudinal field entanglement, growth is strongly sup-
pressed, while local observables feature persistent oscil-
lations whose frequencies coincide with the meson masses.
A similar lack of relaxation has also been found later in a
variety of physical models spanning from gauge theories
[27–30] and fractons [31] to Heisenberg magnets [32] and
systems with long-range interactions [33]. However,
despite a large number of numerical investigations, most
of the understanding of whether and how local observables
will equilibrate after a quench remains at a phenomeno-
logical level. This is mainly because no lattice integrability
technique [34] is available to systematically analyze these
strongly interacting systems.
In this Letter, we put forward a unified picture to

perturbatively address questions about entanglement
dynamics and relaxation in gapped 1þ 1 dimensional
systems close to a quantum critical point (QCP). In
particular, for the first time, we provide an analytical grasp
on how entanglement growth can be so dramatically
different depending on the nonequilibrium protocol con-
sidered. The formalism combines the perturbative approach
of [35,36] with the mapping in the scaling limit between
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powers of the reduced density matrix and correlation
functions of a local field, called the branch point twist
field [37,38]. For massive systems, this mapping has been
successfully employed at equilibrium [39] and, also,
recently, in a time-dependent context [40]. Crucially, its
conclusions do not rely on any a priori assumption about
the space-time evolution of the quasiparticles.
Focusing on the illustrative example of a quench of the

longitudinal field in the ferromagnetic Ising spin chain, we
will provide examples of how bound state formation and
symmetries of the twist field are responsible for slow
relaxation of local observables and oscillations in the
entanglement entropies. Although derived through field
theory techniques, our results are numerically tested in the
lattice model in the scaling limit, and very good agreement
is found.
Model.—Consider the ferromagnetic Ising spin chain

defined by the Hamiltonian

Hlattice ¼ −
X
n∈Z

½σxnσxnþ1 þ hzσzn þ hxσxn�: ð1Þ

The Ising chain is a prototype of a quantum phase transition
with spontaneous breaking of Z2 symmetry and is critical
for hz ¼ 1 and hx ¼ 0. At criticality, the low energy
excitations are massless free Majorana fermions described
by a conformal field theory with central charge c ¼ 1=2
[41]. Within the renormalization group framework, near the
QCP, expectation values of local operators in the spin chain
can be calculated from the relativistic quantum field theory
(QFT) action

A0 ¼ ACFT − λ1

Z
dxdtεðx; tÞ − λ2

Z
dxdtσðx; tÞ; ð2Þ

which is the celebrated Ising field theory (IFT) [42–44]. In
Eq. (2), the conformal invariant actionACFT is perturbed by
the Z2 even field ε (energy), which is the continuum
version of the lattice operator σzn, and the Z2 odd field σ
(spin), which is, instead, the continuum version of the order
parameter σxn. The coupling constant λ1 is proportional to
the deviation of the transverse field from its critical value
hz − 1, while λ2 is proportional to the longitudinal field hx.
At the QCP, the scaling dimension of σ is Δσ ¼ 1=8 and
that of ε is Δε ¼ 1.
Let jΩi be the ground state of the Hamiltonian H of the

field theory (2). Following a widely studied nonequilibrium
protocol, dubbed quantum quench, at time t ¼ 0, one of the
two coupling constants λi (i ¼ 1, 2) is modified according
to λi → λi þ δλ. The evolution of the prequench ground
state jΩi is governed by the perturbed Hamiltonian

GðtÞ ≔ H þ θðtÞδλ
Z

dxΨðxÞ; ð3Þ

Ψ being either the spin or the energy field and θðtÞ, the
Heaviside step function. This dynamical problem is

analytically not solvable in general [35]. Thus, to provide
theoretical predictions for local observables and entangle-
ment entropies following a quench, one sets up a pertur-
bative expansion in the relative quench parameter
ðδλ=λiÞ ≪ 1.
Perturbation theory.—We revisit and extend the pertur-

bative approach to the quench problem [35] to include
entanglement calculations. In a relativistic scattering theory,
it is possible to consider a basis of in and out states, denoted
by jαiin-out, which are multiparticle eigenstates of the
Hamiltonian H ¼ Gð−∞Þ. In particular, a single-particle
eigenstate ofH has energy eðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ p2
p

, wherem0 is
its prequench mass and p the momentum. Similar eigen-
bases are constructed for the post-quench Hamiltonian
Hpost ≔ H þ δλ

R
dxΨðxÞ ¼ Gð∞Þ. In this case, the energy

of a single-particle state will be denoted by ẽðpÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, being m its postquench mass.

The initial state jΩi can be formally expanded into the
basis of the out-states of Hpost as: jΩi ¼ P

α cαjαioutpost.
Assuming, for simplicity, a unique family of particles,
jαioutpost is then the multiparticle out-state jp1;…; pnioutpost

while the symbol
P

α is a shorthand notation for the
Lorentz invariant integration measure in 1þ 1 dimensions
[45]. The overlap coefficients cα are the elements of the
scattering matrix for the quench problem in Eq. (3). At first-
order in perturbation theory, one has [46,47]

jΩi ¼ jΩipost þ 2πδλ
X
α≠Ω

δðPαÞ
Eα ðFΨ

α Þ�jαioutpost þOðδ2λÞ: ð4Þ

In Eq. (4), Eα and Pα are the prequench energy and
momentum of the state jαiout; δðxÞ is the Dirac delta and
the function FΨ

α is the form factor: FΨ
α ≔ hΩjΨð0; 0Þjαiin,

calculated in the prequench theory. From the expansion in
Eq. (4), it is straightforward to derive the postquench
evolution of a local operator Φ

hΩjΦð0; tÞjΩi
¼ posthΩjΦð0; 0ÞjΩipost

þ 4πδλ
X
α≠Ω

δðPαÞ
Eα Re½e−itEα

postðFΨ
α Þ�hΩjΦð0; 0Þjαioutpost�

þOðδ2λÞ; ð5Þ

with now Eα
post the energy of the state jαioutpost. At OðδλÞ, one

can replace jαioutpost by jαiout inside the sum in Eq. (5) and, by
using known properties of the form factors, it is also possible
to relax the ordering prescription on the momenta of the out-
states [48]. Wewill denote, then, by

P0
α, a Lorentz invariant

integration over the prequench multiparticle states with
unrestricted momenta [49]. The leading order correction
to the one-point function of a local operator after a quench is,
therefore, [35,36]
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hΩjΦð0;tÞjΩi
¼ posthΩjΦð0;0ÞjΩipost

þ4πδλ
X0

α≠Ω

δðPαÞ
Eα Re½e−itEα

postðFΨ
α Þ�FΦ

α �þOðδ2λÞ: ð6Þ

Now, consider a semi-infinite spatial bipartition of the
Hilbert space of the QFT associated to the quench problem
(3). In particular, letL be the semi-infinite negative real line
and R the semi-infinite positive real line and denote by
ρRðtÞ ≔ TrL½e−iHposttjΩihΩjeiHpostt�, the reduced density
matrix after the quench obtained tracing over the left
degrees of freedom. In QFT, half-space Rényi entropies
after a quench SnðtÞ ≔ ð1=1 − nÞ log½TrRρnRðtÞ� are related
to the one-point function of the twist field T n [37,38] by

SnðtÞ ¼
1

1 − n
log ½ϵΔT n hΩjT nð0; tÞjΩi�: ð7Þ

In Eq. (7), ϵ is a short distance cutoff and ΔT n
¼

ðc=12Þðn − n−1Þ is the scaling dimension of the twist field
at the QCP [50–52]. The von Neumann entropy SðtÞ is
defined through the limit SðtÞ ≔ limn→1 SnðtÞ.
In writing Eq. (7), a new difficulty arises: the expectation

value of the twist field has to be calculated in an n-fold
replicated QFT, and the time evolution of the twist field
after the quench is governed by the replicated HamiltonianP

n
r¼1H

ðrÞ
post ¼

P
n
r¼1ðHðrÞ þ δλ

R
dxΨðrÞÞ, r being the rep-

lica index. However, when calculating the overlaps
out
posthαjΩi at first order in δλ, the sum over the replica
trivializes since the perturbing field ΨðrÞ has nonvanishing
matrix elements only between particles in the same copy.
Therefore, one gets Eq. (4) with a prefactor n in front of the
sum, which only involves states within one particular
replica, for instance the first. By repeating the derivation
of Eq. (6) now, we conclude that the leading order
expansion of the twist field one-point function after a
quench is

hΩjT nð0; tÞjΩi
¼ posthΩjT nð0; 0ÞjΩipost

þ 4πnδλ
X0

α≠Ω;
α∈1st rep:

δðPαÞ
Eα Re½e−itEα

postðFΨ
α Þ�FT n

α � þOðδ2λÞ;

ð8Þ

where, as indicated, the sum only contains states in the first
replica. Similar to the discussion around Eq. (6), FT n

α in
Eq. (8) denotes the prequench twist-field matrix element
FT n
α ¼ hΩjT nð0; 0Þjαiin.
Longitudinal field quench.—We examine a quench along

the vertical axis of the phase diagram of the IFT depicted in
Fig. 1. This quench, cf. Eq. (2), involves a sudden change of

the coupling λ2 → λ2 þ δλ while keeping λ1 ¼ 0. In the
lattice model described by Eq. (1), it modifies the longi-
tudinal field hx → hx þ δhx at fixed transverse field hz ¼ 1.
In the presence of a longitudinal field, the Ising spin chain
is strongly interacting and the perturbative approach is the
only analytical device for studying entanglement dynamics.
From a QFT perspective, at λ1 ¼ 0 and λ2 ≠ 0, both the

prequench and postquench theories are integrable. The
spectrum contains eight stable particles [42,53], whose
masses are in correspondence with the components of the
Perron-Frobenius eigenvector of the Cartan matrix of the
Lie algebra E8. We will refer to such a field theory, in short,
as the E8 field theory, see Fig. 1. The masses of the eight
particles have been partially measured experimentally [54]
and numerically estimated in the scaling limit using matrix
product states [55]. In the E8 field theory, both the spin
operator and the twist field couple to the eight one-particle
states. Equations (6) and (8), predict, in this case, that at
OðδλÞ, the one-point function of the spin and the entangle-
ment entropies must oscillate in time without relaxing. The
first-order result for the order parameter [36] is reobtained
in [56]. For the time evolution of the entanglement
entropies, perturbation theory, combined with Eq. (7), gives
at large times

SnðtÞ − Snð0Þ ¼t≫1 δλ
λ2

�
2nCσ
1 − n

X8
a¼1

F̂σ
aF̂

T n
a

r2a
cosðmratÞ

þ 1

1 − n

ΔT n

2 − Δσ

�
þOðδ2λÞ: ð9Þ

where the coefficient [63] Cσ ¼ −0.065841…, and the
(real) normalized prequench one-particle form factors of
the spin field [64], F̂σ

a, and the twist field [65], F̂
T n
a are also

summarized in [56]. The universal ratios ra in Eq. (9) are
the masses of the particles in the E8 field theory normalized
by the mass of the lightest particle, whose value after the
quench is m. It is finally possible [56] to extrapolate the

FIG. 1. Phase diagram of the IFT, described by the action (2).
We consider applications of the perturbation theory to a quench of
the longitudinal field hx ∝ λ2, while keeping the transverse field
ð1 − hzÞ ∝ λ1 at its critical value, i.e., λ1 ¼ 0. In the scaling limit,
the prequench theory is integrable and corresponds to the E8 field
theory. For λ2 ¼ 0, the prequench theory can be mapped to
noninteracting fermions with mass λ1.
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results for the Rényi entropies to n → 1 and predict the
long-time limit of the von Neumann entropy. There are
subleading corrections in time to Eq. (9) of order t−3=2 (but
of leading order in δλ) which are discussed in [56].
The field theoretical result in Eq. (9) can be tested against

numerical simulations through matrix product states in the
Ising spin chain near the QCP. For finding the initial state and
for the time evolution, we use the iTEBD algorithm [66,67]
extrapolated to the scaling limit, details are given in [56]. In a
nonequilibrium protocol, the longitudinal field is quenched
from hx to hx þ δhx with δhx=hx ¼ δλ=λ2 ¼ −0.04, 0.05.
Because of the absence of visible linear growth of the
entanglement entropies [56], the simulation can reach large
enough time to carry out a Fourier analysis. The nonuniversal
mass coupling relation is obtained by fitting the numerical
data for the order parameter to the theoretical curve given in
[56], and we have m ≈ 5.42553ðhx þ δhxÞ8=15, consistent
with earlier estimates [55,68].
According to Eq. (9), in the scaling limit, with time

measured in units of m−1, the time evolution of entangle-
ment entropies should follow a universal curve. The
numerical results for real time evolution in the scaling
region are summarized in Fig. 2 for the von Neumann and
the second Rényi entropy, showing excellent agreement
with theoretical predictions obtained from Eq. (9). The
curves for the entanglement entropies have been shifted
vertically by an empirical value to account for higher order
corrections [40] to the twist field postquench expectation
value, cf. Eq. (39) in [56]. In Fig. 3, we also show the
numerical Fourier spectrum of the von Neumann entropy

calculated from extrapolated data up to mt ¼ 170. The
Fourier transform was carried out with respect to the
rescaled time mt, therefore, the main frequency is at
ω̃ ¼ 1 for both quenches. The various peaks are related
to the mass ratios of different particles summarized in [56].
For infinite time, the one particle peaks would be δ-function
peaks, but for finite time they have finite height. The height
ratios are related to form factors of the longitudinal field
and the twist fields through Eq. (9). The horizontal line in
Fig. 3 related to the lightest particle is set by hand, the ones
related to m2, m3, and m4 are calculated from the form
factors given in [56].
Transverse field quench.—Now, we consider a quench of

the transverse field hz → hz þ δhz for longitudinal field
hx ¼ 0. In the IFT, see Fig. 1, this protocol displaces along
the horizontal axis of the phase diagram: λ1 → λ1 þ δλ,
modifying the mass of the Majorana fermion [9,69]. The
ground state jΩi of the prequench theory can be expanded
in the postquench quasiparticle basis as

jΩi ¼ exp

�Z
∞

0

dp
2πẽðpÞ K̃ðpÞa†postð−pÞa†postðpÞ

�
jΩipost;

ð10Þ

where the function K̃ðpÞ is given in [69] and a†postðpÞ are
postquench fermionic creation operators. Because of the
properties of the free fermionic form factors, the expect-
ation value of the twist field exponentiates

FIG. 2. The time evolution of the von Neumann entropy (top)
and the second Rényi entropy (bottom) differences ΔSn ¼
SnðtÞ − Snð0Þ for quenches with δhx=hx ¼ −0.04 (left) and
δhx=hx ¼ 0.05 (right). The dots are the extrapolated iTEBD
data. Lines are the theoretical prediction from Eq. (9) (n → 1
limit for von Neumann), up to the first four particles in the sum,
and incorporating the two particle contributions given in [56].

FIG. 3. Numerical Fourier transform of the variation of the von
Neumann entropy (related to the variable mt) for quenches with
δhx=hx ¼ 0.05 (solid) and δhx=hx ¼ −0.04 (dashed). Vertical
lines indicate different frequencies. The horizontal lines mark the
peaks corresponding to the masses of the four lightest particles.
From top to bottom they correspond to m1, m2, m3, and m4,
respectively. The dashed horizontal line is set by hand, and the
three dotted horizontal lines were calculated from the ratios of the
one-particle form factors based on Eq. (9).
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hΩjT nð0; tÞjΩi
posthΩjT nð0; 0ÞjΩipost

¼ exp

�X∞
k;l¼0

Dc
2k;2lðtÞ

�
: ð11Þ

For a proof of Eq. (11), we refer to the Supplemental
Material [56]. The amplitudes Dc

2k;2lðtÞ contribute at leading
order ½ðδλ=λ1Þ�kþl in perturbation theory and can be sys-
tematically computed. Differently from Eq. (9), the oscil-
latory first-order term is Oðt−3=2Þ for large time, while in
[40], it was shown that Dc

2;2ðtÞ ¼ ½ðδλ=λ1Þ�2½−jAjtþOð1Þ�.
In the absence of interactions, exponentiation of second
order contributions then leads to linear growth of the Rényi
entropies as a by-product of relaxation of the twist-field one-
point function.
Discussion.—Absence of relaxation of the order param-

eter and persistent oscillations in the entanglement entro-
pies have been observed previously in several numerical
investigations of the Ising spin chain and its scaling limit
[22–26]. In this Letter, we formulated a new first principle
perturbative approach which quantitatively explains these
phenomena. Persistent oscillations in the one-point func-
tion of a local observable are only possible if it can create
a single quasiparticle excitation of the postquench
Hamiltonian. This is a necessary condition that is never
satisfied in absence of interactions, as also emphasized in
[35]. By mapping entanglement entropies into correlation
functions of a local field, the twist field, we then provided
an analogous criterion for understanding when entangle-
ment growth can slow down.
An important question is whether the exponentiation of

higher orders in perturbation theory will damp the oscil-
latory first-order result for local observables derived in
Eqs. (6) and (8). The time-scale for this to happen defines
the relaxation time which is model dependent and relates
specifically to the analytic structure of the overlaps with the
initial state [70,71]. For instance, see Eq. (11), for mass
quenches in free theories, the relaxation time can be
calculated starting from the second order in perturbation
theory. To test the robustness of the first-order result in an
interacting theory, we performed, in [56], additional
numerical simulations. They indicate that, along the E8

line, see Fig. 1, the order parameter σx does not relax and
the entanglement entropies still show long-living oscilla-
tions also when the quench parameter δhx=hx is of order
one. Remarkably then, even after a large longitudinal field
quench, the late-time dynamics continues to be qualita-
tively captured by first-order perturbation theory.
The formalism in this Letter allows calculating entan-

glement entropies in the scaling limit for any interacting
massive theory without fine-tuning of the initial state.
A priori, this includes nonintegrable models, even if the
development of a perturbation series will generally be more
challenging. It could be adapted to quench protocols in
absence of translation invariance [72], and we believe that it

will be useful for other one-dimensional systems [28,33,73]
that show similar long-living oscillations.
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