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Comprehensive study on parity-time (PT ) symmetric systems demonstrates the novel properties and
innovative application of non-Hermitian physics in recent years. In the quantum regime, PT symmetric
physics exhibits unique quantum dynamical behaviors such as spontaneous state-distinguishability
oscillation. However, the construction and control of aPT symmetric quantum system are still challenging,
that and restrict the experimental investigation of PT symmetric quantum nature and application. In this
Letter, we propose and construct a recycling-structure PT symmetric quantum simulator for the first time,
which can effectively simulate the discrete-time dynamical process of a PT symmetric quantum system in
both unbroken and broken phases, to be different from our previous work [J.-S. Tang, et al., Nat. Photonics
10, 642 (2016)]. We investigate the dynamical features of quantum state distinguishability based on the PT
symmetric simulator. Our results demonstrate the novelPT symmetric quantum dynamics characterized by
the periodical oscillation of state distinguishability in the unbroken phase, and the monotonic decay of that
in the broken phase. This work also provides a practical experimental platform for the future intensive study
of PT symmetric quantum dynamics.
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Introduction.—AHamiltonian together with a dynamical
equation, e.g., the Schrödinger equation in quantum
mechanics, determine the performance of system dynam-
ics, in which a Hermitian Hamiltonian featuring real
eigenvalues guarantees the reality of system eigenenergies.
As a class of special non-Hermitian Hamiltonian, the
parity-time (PT ) symmetric Hamiltonian possesses the
real eigenvalue spectrum and critical behaviors near an
exceptional point [1,2], therefore, it characterizes a class
of dynamical modes, which are absent in conventional
Hermitian systems but emerge with novel features in PT
symmetric systems [3]. Based on the fundamental structure
of coupled gain and loss subsystems, PT symmetric
dynamics has been observed in various classical systems,
such as an optical waveguide [4,5], microwave waveguide
[6], microcavity [7,8], metasurface [9], electronic circuit
[10], atom-mediated optical system [11,12], and optically
mediated mechanical system [13]. Taking advantage of the
unique non-Hermitian properties, these PT symmetric
systems are further developed as various functional
devices [14,15], such as a high-sensitivity sensor [16],
single-mode laser [17–19], nonreciprocal device [7,20],
wireless power transfer [21], and topological mode transfer
[6,13]. The intensive study of PT symmetric physics
on the extensive classical systems has demonstrated the
novel properties and outstanding applications of non-
Hermitian physics.

Towards the quantum regime, the PT symmetric system
also exhibits novel behaviors absent in the conventional
quantumsystem. State distinguishability, i.e., capacity of two
quantum states to be distinguished by quantum-mechanical
measurement, was revealed oscillating spontaneously in the
PT symmetric unbroken phase and decaying monotonically
in the broken phase [22]. State distinguishability is a basic
notion in quantum hypothesis testing and state discrimina-
tion [23], and utilized in many quantum-information appli-
cations such as quantum cryptography [24] and quantum
non-Markovianity identification [25,26]. It should be non-
increasing in the Hermitian system and Markovian system
as a comparison to that in the PT symmetric system. The
oscillation period and decay rate of state distinguishability
can be controlled by a non-Hermitian degree in PT sym-
metric system, where the exceptional point corresponds to
the phase transition criticality of the state-distinguishability
dynamics. PT symmetric quantum dynamics possesses the
unique properties which are completely distinct from the
dynamical behaviors in conventional quantum systems such
as the closed Hermitian system and open Markovian or
non-Markovian system. Therefore, thorough experimental
investigation is crucial for the deeper understanding of
PT -symmetry-induced state-distinguishability dynamics.
However, in contrast to classical systems, quantum-

regime PT symmetric physics is still obscure on an
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experimental platform [3,15], since the full control of a PT
symmetric quantum system is challenging. PT -symmetric-
Hamiltonian-driven dynamics has been observed in some
quantum systems, e.g., light-matter quasiparticles [27], a
cold atom [28], and the nitrogen-vacancy center in diamond
[29], while the thorough experimental study of PT sym-
metric quantumproperties and applications is the further goal
to be achieved. On the other hand, quantum simulation is
another effective route to access objective quantumbehaviors
[30,31]. In our previous work [32], a single PT -symmetric
quantum evolution was simulated in a single-photon system,
but the simulation ofPT symmetric quantum dynamics was
unexplored.
In this Letter, we propose and construct the recycling-

structurePT symmetric quantum simulator for the first time,
which makes it possible to simulate the discrete-time PT
symmetric quantum dynamics beyond the single evolution.
Moreover, based on the quantum simulator, we observe
the PT symmetric dynamics in both unbroken and broken
phases. and investigate unique state-distinguishability
dynamical behaviors. This work demonstrates the PT -
symmetric-Hamiltonian-induced periodical oscillation of
state distinguishability in the PT symmetric unbroken
phase and monotonic decay of that in the broken phase.
The dynamics transition behaves as the characteristic-time
criticality at the exceptional point. The work also provides
and demonstrates a practical experimental platform of the
PT symmetric quantum simulator for further study of non-
Hermitian quantum physics.
Theory.—The two-level PT symmetric Hamiltonian

investigated in our work can be written as

H ¼
�
ia 1

1 −ia

�
; ð1Þ

where the nonunit real parameter a ≥ 0 represents the non-
Hermitian degree. a ∈ ½0; 1Þ, a ∈ ð1;þ∞Þ, a ¼ 0, and a ¼
1 correspond to the PT symmetric unbroken phase, PT
symmetric broken phase, Hermitian point, and exceptional
point, respectively. The nonunit PT symmetric evolution
operator of time t can be deduced as

UðtÞ ¼ e−iHt ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
�
g1 þ g2 −i sin θ
−i sin θ g1 − g2

�
; ð2Þ

where g1¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1−a2

p
cosθ, g2 ¼ a sin θ, and θ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
t.

We want to note that the actual Hamiltonian and evolution
time for the actual physical system should be actually
written as H ¼ ϵ1H and T ¼ ϵ2t with units, respectively.
The constants ϵ1 and ϵ2 with units are determined by the
specific actual system, with the relation that ϵ1ϵ2=ℏ is a
nonunit constant. For simplicity and without loss of
generality, the unit terms ϵ1, ϵ2, and ℏ are left out here,
and only the nonunit parts are considered below. The
dynamical map of the PT symmetric system is given by

ξ½ρð0Þ; t� ¼ UðtÞρð0ÞU†ðtÞ
Tr½UðtÞρð0ÞU†ðtÞ� ; ð3Þ

and the quantum state evolving at time t is deduced as
ρðtÞ ¼ ξ½ρð0Þ; t�. In general quantum systems, the trace
distance represents the natural metric distance of two
quantum states in the space of physical states [33], which
is defined as

D½ρ1ðtÞ; ρ2ðtÞ� ¼
1

2
Trjρ1ðtÞ − ρ2ðtÞj; ð4Þ

where jAj ¼
ffiffiffiffiffiffiffiffiffi
A†A

p
, ρ1ðtÞ and ρ2ðtÞ are the density matrices

of the two states. Trace distance D½ρ1ðtÞ; ρ2ðtÞ� ∈ ½0; 1�,
and has the following physical properties: (1) It is invariant
under unitary transformations and nonincreasing under
completely positive and trace-preserving (CPTP) maps
[34,35]; (2) It can be physically interpreted as the distin-
guishability of the two quantum states, since f1þ
D½ρ1ðtÞ; ρ2ðtÞ�g=2 is the maximal probability to discrimi-
nate the correct states when the two states are prepared
beforehand with the probability 1=2 for each other to be
discriminated [24,36]. Therefore, the trace distance of
Eq. (4) is an effective measure to quantify the state
distinguishability in quantum dynamics [22,24].
Experiment.—The principal frameworks of quantum

simulation schemes are shown in Fig. 1. The general
quantum simulator is characterized by a black box in
Fig. 1(a), which operates to map the arbitrary input state
ρð0Þ to the evolved state ρ̃ðtÞ by the simulated dynamical
map ξ̃ functioning as ρ̃ðtÞ ¼ ξ̃½ρð0Þ; t�. The simulation
ability can be embodied as ρ̃ðtÞ ≈ ξ½ρð0Þ; t�, where t is
the objective evolution time deduced from the simulation
setting. The dynamical process can be determined by
detecting and collecting the evolved states over time.
According to Eq. (3), it is clear that the PT symmetric
dynamical map is P divisible. Therefore, the quantum
simulator can be disassembled as the chain structure in the
discrete-time mode shown in Fig. 1(b), which is constituted
by the uniform quantum gates operating as Ũ. Ũ possesses

ρ(Δt)
ρ(nΔt)...ρ(0)

ρ(0) ρ(0) ρ(kΔt)ρ(t)

...
ρ(kΔt)

ξ

U UU

U~

~ ~ ~

~
~

~ ~
~

~(a) (c)

(b)

FIG. 1. Principal framework of three types of quantum simu-
lations. (a) General quantum simulation, operating as the
dynamical map ρ̃ðtÞ ¼ ξ̃½ρð0Þ; t�. (b) Chain-structure quantum
simulation, outputting the dynamical process of 0 − n steps with
the discrete time of Δt. (c) Recycling-structure quantum simu-
lation, reducing the construction complexity by recycling the
quantum objective.
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the effective simulation as the evolutionUðΔtÞ, where Δt is
the discrete evolution time. Furthermore, the recycling
scheme can be applied to reduce the complexity of the
quantum-gate construction, and the recycling-structure
quantum simulator is shown in Fig. 1(c), where the
discrete-time quantum dynamical process is obtained by
collecting the evolved states during successive-round
recycling operation. The PT symmetric quantum simulator
in our work is built using the method of recycling-structure
simulation, which is constituted by the quantum gate
simulating two-level PT symmetric evolution. The quan-
tum gate is constructed based on a sequence of operations
on the quantum space with extended dimensions of a single
photon, and the simulated PT symmetric system is
obtained effectively by performing appropriate projection
measurement on the ancilla space of the single photon.
The experimental setup of the recycling-structure PT

symmetric quantum simulator is shown in Fig. 2(a), which
is constituted by four modules: (1) Photon-pair source. It
generates the target photon and trigger photon simulta-
neously by spontaneous parametric down conversion. The
former is set as the qubit carrier for the following
simulation operation, and the latter is detected directly
as the trigger signal, which can be used as the time stamp
marking different recycling rounds and substantially reduce
the detecting noise. (2) State preparation. The polarization
state of the target photon is prepared to the desired initial
state in this module. (3) Recycling evolution. This module
applies extended evolution, postselection, and mode
reshaping on the target photon in the recycling loop
successively, to realize an effective quantum gate of PT
symmetric evolution. The photon is output from the loop
with certain probability (set as 1=2 here), or reflected by the
beam splitter (BS) to be recycled for the next-round
evolution. (4) State tomography. The density matrix of
the output-photon polarization state is acquired, after the

coincidence-counting spectrum of photon pairs at different
delay times is recorded in this module. One of the typical
background-noise-subtracted spectra is shown in Fig. 2(b)
[37]. The orange dashed lines in Fig. 2(b) indicate the
coincidence signals from the photon pairs with time stamps
of k ¼ 0 ∼ 5, which mark the signals corresponding to the
discrete-time dynamical process with successive-round
evolution. The simulated evolution time is deduced by
t ¼ kΔt, where Δt is the single-round evolution time set by
extended evolution in module (3).
In the recycling evolution module, the polarization state

(path state) is transferred to the path state (polarization
state) by beam displacer BD1 (BD6) together with half-
wave plates at the entrance (exit) of the recycling loop.
Extended evolution and postselection are applied on the
extended quantum space, to realize the effective PT
symmetric evolution on the one-qubit system. The state
input into extended evolution for the kth evolution is set as

jψk−1i ¼ jHijϕk−1i; ð5Þ

where the path state jϕk−1i¼ αk−1jUiþβk−1jDi, with αk−1
and βk−1 are the complex coefficients, jUi, jDi and jHi are
the up-path, down-path, and horizontal-polarization states,
respectively. The normalization coefficient is omitted here
and below for simplicity. The state output from extended
evolution is αk−1jUiUðΔtÞjHi þ βk−1jDiUðΔtÞjVi, where
jVi is the vertical-polarization state. By taking the polari-
zation qubit as the ancilla in postselection and performing a
projection measurement on the superposition state ðjHi þ
jViÞ= ffiffiffi

2
p

of ancilla, the state output from postselection
is jHiðαkjUi þ βkjDiÞ, where αk ¼ αk−1hHjUðΔtÞjHi þ
βk−1hHjUðΔtÞjVi and βk ¼ αk−1hVjUðΔtÞjHiþ
βk−1hVjUðΔtÞjVi. In a word, extended evolution and
postselection operate as the iterative map to output the
state through the kth-round evolution:

U(kΔt)

(a) (b)

FIG. 2. (a) Experimental setup of the recycling-structure PT symmetric quantum simulator. (b) Background-noise-subtracted
coincidence-counting spectrum (top) and the corresponding part-enlarged spectrum (bottom). The delay time is the time interval
between the trigger and target photons, discretized by the 648-ps-width TDC time bin. The orange dashed lines indicate the coincidence
signals of recycling rounds 0–5, where the adjacent-signal interval is 13 bins. PBS, polarizing beam splitter; BS, beam splitter; QWP,
quarter-wave plate; HWP, half-wave plate; BD, beam displacer; SMF, single-mode fiber; PPKTP, periodically poled potassium titanyl
phosphate; SPAD, single-photon avalanche diode; TDC, time-digital converter.
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jψki ¼ jHiUðΔtÞjϕk−1i: ð6Þ

Mode reshaping in module (3) operates to renormalize the
beam size by coupling the beam into the single-mode fiber,
preventing considerable beam expansion during propaga-
tion in the recycling loop. More details of the experimental
setup and methods are referred to in the Supplemental
Material [37].
Results.—The density matrices of the output states

during three-round iterative evolution are shown in
Fig. 3, with the initial states set to jHi and jVi. The
density-matrix elements in the PT symmetric unbroken
phase are shown in Figs. 3(a) and 3(b) with the non-
Hermitian degree a ¼ 0.75 and single-round evolution time
Δt ¼ 0.4, and those in broken phase are shown in Figs. 3(c)
and 3(d) with a ¼ 1.5 and Δt ¼ 0.2. The evolved states
corresponding to more rounds are not taken into account
since their signals are too weak and overwhelmed by noise
in some measurement bases. To acquire the states during
longer evolution time, the initial states are renormalized as
the final states output from the last-round evolution, and are
input into the recycling evolution module for the following-
round evolution. The whole dynamical process is obtained
by this iterative method for the following investigation of
state-distinguishability dynamics.
The dynamics of state distinguishability in the PT

symmetric quantum system is shown in Fig. 4, where
the points are the experimental results acquired from the
simulator, and the lines are the corresponding theoretical
results. The state-distinguishability dynamical behaviors
are indicated by the evolution of trace distance defined as
Eq. (4), with jHi and jVi being the two orthogonal initial
states. The state distinguishability is invariant and equals to

1 in the Hermitian system, as the results shown in Fig. 4(a)
with a ¼ 0. In the PT symmetric unbroken phase, the state
distinguishability possesses remarkable periodic oscillation
behavior shown in Fig. 4(a) with a ≠ 0, which can fully
recover in every period. The period increases with non-
Hermitian degree, indicating that non-Hermitian degree can
be developed as a parameter to control the quantum
distinguishability. In the PT symmetric broken phase,
the state distinguishability decays monotonically and the
distinguishability-oscillation behavior disappears as shown
in Fig. 4(b). The decay rate increases with non-Hermitian
degree. The exceptional point corresponds to the state-
distinguishability dynamical criticality as that shown in
Fig. 4(c). The characteristic times of state-distinguishability
dynamics are the oscillation period in the unbroken phase
and the relaxation time in the broken phase, respectively.
Both the characteristic times approach infinity near the
exceptional point, exhibiting the phase-transition process of
state distinguishability dynamics controlled by the PT
symmetric phase.
Discussion and conclusion.—The quantum dynamics

characterized by varying state distinguishability also
exists in conventional open quantum systems, where the
state-distinguishability increase is the indicator of non-
Markovian quantum dynamics [25,26]. It should be noted
that the non-Markovian quantum dynamics is completely
distinct from the PT symmetric dynamics investigated in

ρ
kΔ
t

ρ
kΔ
t

HH HH HV HV VH VH VV VVR I R I R I R I HH HH HV HV VH VH VV VVR I R I R I R I

a=0.75
Δt=0.4
ρ(0)= H H

a=0.75
Δt=0.4
ρ(0) V

a=1.5
Δt=0.2
ρ(0) H

a=1.5
Δt=0.2
ρ(0)

= V

= H = V V

(a) (b)

(d)(c)

FIG. 3. Density matrices of the evolved states during three-
round recycling evolutions output from the simulator. (a),(b)
Results in PT symmetric unbroken phase. (c),(d) Results in PT
symmetric broken phase. Density matrix elements XYR and
XYI represent the matrix elements of ReðhXjρðkΔtÞjYiÞ and
ImðhXjρðkΔtÞjYiÞ, respectively. For every matrix element, the
successive three results correspond to evolved state ρðkΔtÞ with
k ¼ 1 ∼ 3. The histograms and points indicate the theoretical
and experimental results, respectively. The parameters of non-
Hermitian degree a, single-round evolution time Δt, and initial
state ρð0Þ are marked in (a)–(d).

t t

a=0
a=0.25

a=0.5
a=0.75
a=0.99

a=1.01
a=1.5

a=2.5
a=5
a=10

 a

(a)
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FIG. 4. State-distinguishability dynamics in PT symmetric
(a) unbroken and (b) broken phase. The non-Hermitian degree
a of all results are marked in figures. (c) Phase-transition process
exhibited by the characteristic times of state-distinguishability
dynamics, i.e., the oscillation period in unbroken phase (in the
left orange region with 0 ≤ a < 1) and relaxation time in broken
phase (in the right blue region with a > 1). The lines and points
are theoretical and experimental results, respectively. Note that
the units for the simulated time, including evolution time t,
oscillation period, and relaxation time, are omitted here as
discussed above, and their counterparts in real physical systems
should include units determined by specific systems.
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this work. For non-Markovian dynamics, the dynamical
maps can not be P divisible by definition. The objective
non-Markovian system to be studied is concentrated on the
linear quantum system, and the dynamical maps are CPTP
maps for physical conditions. For PT symmetric dynam-
ics, the dynamical maps are P divisible, and generally not
trace-preserving. The state-distinguishability oscillation in
PT symmetric dynamics can be directly interpreted as the
result of the dynamical overlap between the skew eigen-
states in the PT symmetric system, which is a remarkable
characteristic absent in conventional open quantum systems
[37]. In the unbroken phase, the overlap is nontrivial and
generates a beat from the two skew dynamical eigenstates,
where the beat period equals the oscillation period. In the
broken phase, the overlap becomes trivial, and moreover,
the amplitudes of the eigenstates grow or shrink mono-
tonically under dynamical evolution, resulting in the state
distinguishability decreasing monotonically [37].
To explain the intrinsic distinction between the PT

symmetric quantum dynamics and conventional quantum
dynamics, the fundamental physical interpretation of PT
symmetric quantum mechanics can be established in two
ways. Oneway is to redefine the inner product of the Hilbert
space corresponding to thePT symmetric system [2], which
could lead to the physical systems with a special metric
operator and the application to deal with some problems in
quantum cosmology [42,43]. The novel PT symmetric
dynamics could be connected to the space metric trans-
formation of thePT symmetric systems [44]. The other way
is to treat thePT symmetric space as a projective space of an
extended Hermitian space [44], which could lead to the
design of larger Hermitian systems with different structures
and projectionmethods. ThePT symmetric dynamics could
be explained by special designs like ancilla postselection
[22,45] or weak measurement [31].
Besides the theoretical models established to explain the

unique PT symmetric dynamics, the theoretical study for
the quantum-information applications based on the unique
PT symmetric state distinguishability may be required,
since state distinguishability plays a very important role in
many quantum information tasks [23–25] as mentioned in
the Introduction. The recycling framework with state dis-
tinguishability demonstrated in this work could be directly
developed and adapted for the related studies in the future.
It is worth noting that the method of the recycling-

structure simulator shown in Fig. 2(a) is valid for arbitrary
non-Hermitian evolution actually, but not restricted to PT
symmetry [37]. Therefore, the recycling-structure quantum
simulator demonstrated in this work can be extended
directly to the simulation work for other non-Hermitian
quantum dynamics like anti-PT symmetric dynamics [46]
and pseudo-Hermitian dynamics [44,47], etc. Moreover,
further improvement could be concentrated on the simu-
lation of time-dependent non-Hermitian quantumdynamics,
which could be realized by using a pulsed photon source and

replacing some wave plates with temporally controlled
electro-optical modulators in the recycling-structure simu-
lator [37,48]. This improvement could make it possible to
investigate the quantum topological switch encircling the
exceptional point, which possesses great potential for a new
method of quantum control [6].
In conclusion, we propose and construct a recycling-

structure PT symmetric quantum simulator in discrete-
time mode for the first time. The discrete-time quantum
dynamical process of the single photon can be simulated
effectively in both PT symmetric unbroken and broken
phases. Based on this experimental platform, the PT
symmetric state-distinguishability dynamical behaviors
are investigated experimentally. It demonstrates the novel
state-distinguishability-oscillation behavior in the PT
symmetric unbroken phase, which is completely different
from the conventional non-Markovian quantum dynamics.
As a contrast, we also demonstrate the monotonic state-
distinguishability decay in a PT symmetric broken phase.
The results exhibit that the non-Hermitian degree character-
izes the state-distinguishability criticality at the exceptional
point. Our work provides a practical experimental platform
for the investigation of the PT symmetric physics, and
sheds light on the study of non-Hermitian properties and
applications towards the quantum regime.
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