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The study of topological band structures is an active area of research in condensed matter physics and
beyond. Here, we combine recent progress in this field with developments in machine learning, another
rising topic of interest. Specifically, we introduce an unsupervised machine learning approach that searches
for and retrieves paths of adiabatic deformations between Hamiltonians, thereby clustering them according
to their topological properties. The algorithm is general, as it does not rely on a specific parametrization of
the Hamiltonian and is readily applicable to any symmetry class. We demonstrate the approach using
several different models in both one and two spatial dimensions and for different symmetry classes with and
without crystalline symmetries. Accordingly, it is also shown how trivial and topological phases can be
diagnosed upon comparing with a generally designated set of trivial atomic insulators.
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Introduction.—With the advent of the concept of topo-
logical insulators [1,2], considerable research effort has
focused on further underpinning the theoretical understand-
ing andmaterial realizations of such nontrivial systems. In the
past two years, specific progress has been made on system-
atically categorizing topological band structures upon con-
sidering the role of crystal symmetries [3,4]. The different
topological band structures, that is, configurations that cannot
be mapped into each other without closing the gap and
breaking the symmetries under considerations, are obtained
as solutions to a combinatorial problem [5], matching the
underlying descriptive equivariant K theory [5,6].
Another active research field is applying machine

learning (ML) techniques to physics [7–10]. There are
many applications, such as providing variational represen-
tations of wave functions [11,12], acceleration of
Monte Carlo sampling [13], in material science and
density-functional theory [14–20], and detection of phase
transitions [21–45]. Concerning the latter, it has been
established that topological phase transitions are generally
more difficult to capture than symmetry-breaking phase
transitions [46], due to the absence of a local order
parameter. While some progress has been achieved, most
approaches for learning topological phases rely on super-
vised learning (require labeled data) and/or manual feature
engineering taking into account prior knowledge of the
phases. In [35], however, an unsupervised ML approach
was proposed to classify samples based on topological
properties from raw data. The key idea is to view the
samples as nodes on a graph with connections defined by
the local similarity Kl;l0 of pairs l, l0 of samples. The global
structure of the graph can be represented in a low-dimen-
sional embedding constructed from diffusion maps [47];
this, in turn, reveals the distinct topological classes.

When detecting “bulk topological order” [48], e.g., of
two-dimensional (2D) XY models, this procedure can be
directly applied to (Monte Carlo) snapshots [35], revealing
the presence or absence of superselection sectors [49]. In
this Letter, we are interested in band topology. We are then
typically given a few Hamiltonians, our “samples,” repre-
sented by the dark blue and red dots in Fig. 1(a), that we
want to cluster according to whether they can be deformed
into each other. These do not a priori cover the entire space
of Hamiltonians of that symmetry class. To make sure we
are not missing any paths, we could randomly sample
Hamiltonians of that symmetry class (light dots), as
suggested recently within a different ML setup [45], and
apply the procedure of [35] to this larger set of samples.
Since the amount of random samples grows rapidly with
the size of the Hilbert space, we here propose a different
ML procedure that goes beyond previous work by

(a) (b) (c)

FIG. 1. Instead of randomly sampling Hamiltonians of a
symmetry class [light red and blue dots in (a)], a path-finding
algorithm is employed to retrieve adiabatic deformations (gray
arrows) between Hamiltonians (dark red and blue dots). This
constructs an effective graph (b), which we use to find a low-
dimensional embedding (c) that reveals the topologically distinct
classes.
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explicitly searching for adiabatic paths (little gray arrows).
In this way, we construct an effective graph, see Fig. 1(b),
that we take as starting point, yielding a low-dimensional
embedding [Fig. 1(c)] that reflects the topological sectors.
In this space, we then apply k-means clustering.
Algorithm.—Suppose we are given a set of m transla-

tionally invariant Hamiltonians with Nb bands,
fhlk ∈ CNb×Nb; l ¼ 1;…; mg. Our goal is to classify the
samples l ¼ 1;…; m topologically, i.e., decide which
Hamiltonians can be deformed into each other without
closing the gap or breaking a certain subset of symmetries
of the Hamiltonians. These can include time-reversal
symmetry (TRS) Θ, particle-hole symmetry (PHS) Ξ,
and chiral symmetry C, as in the Altland-Zirnbauer (AZ)
classification, or any other set of unitary symmetries
constituting a group G.
To define a “continuous deformation,” we introduce the

following measure of k-local similarity between
Hamiltonians l and l0 (Nk is the number of k points in
the sum):

Sl;l0 ¼
1

Nk

X

k

1

Nb

XNb

n¼1

jhψ l
nkjψ l0

nkij2; ð1Þ

with eigenstates jψ l
nki, satisfying hlkjψ l

nki ¼ ϵlnkjψ l
nki,

ϵlnk < ϵln0k for n < n0 (for now, we neglect degeneracies).
The normalization in Eq. (1) is chosen such that Sl;l ¼ 1. It
further holds Sl;l0 ¼ Sl0;l, 0 ≤ Sl;l0 ≤ 1, and Sl;l0 ¼ 1 if and
only if hlk and hl

0
k are identical except for a deformation of

the band energies, that does not close any gap in the system.
If the set of Hamiltonians already contains all relevant
adiabatic paths, we can directly use the approach of [35]
with connections K0

l;l0 ¼ exp½−ð1 − Sl;l0 Þ=ϵ� to perform the
topological analysis, where ϵ is a suitably chosen coarse-
graining parameter. As discussed above, this is very
unlikely. To overcome this issue, we use that the spectra
of two Hamiltonians hk and h0k are topologically equivalent
if h0k ¼ UkhkU

†
k with unitary Uk ¼ eiφkΛ that respects the

symmetries of the symmetry class under consideration;
here Λ is the associated generator and φk is required to be a
continuous function of k. On the level of states, this
“adiabatic deformation” corresponds to jψnki → Ukjψnki.
For each pair of Hamiltonians l and l0 in Eq. (1), we
perform a sequence of deformations, jψ l0

nki → jψ l0;1
nk i →

jψ l0;2
nk i → � � � → jψ l0;Nf

nk i, to maximize the value of Sl;l0 . The

resultant final value Sfl;l0 of the similarity measure, i.e., Sl;l0

with jψ l0
nki replaced by jψ l0;Nf

nk i, will be used as input

for Kl;l0 ¼ exp½−ð1 − Sfl;l0 Þ=ϵ�.
Before discussing our path-finding ML procedure, we

revisit the issue of degeneracies and refine Sl;l0 in Eq. (1),
allowing the possibility of keeping specific subsets of gaps
open while others are permitted to close. Taking such

different partitions of bands has recently been linked to new
forms of topology [50–53]. To this end, we replace the
kernel in Eq. (1) by the refined similarity measure

Sl;l0 ¼
1

Nk

X

k

1

Ñb

XNb

n¼1

X

n0∈Sn

jhψ l
nkjψ l0

n0kij2; ð2Þ

where Sn is the subset of bands f1;…; Nbg that band n is
allowed to close gap or is degenerate with. Further, Ñb ¼PNb

n¼1 jSnj with jSnj denoting the number of elements in
Sn. Our previous form in Eq. (1) corresponds to Sn ¼ fng
with jSnj ¼ 1. To illustrate this, consider the scenario of
four bands, n ¼ 1–4, assuming that we are only interested
in the topological properties of the half filled gap, i.e.,
between n ¼ 2 and n ¼ 3, while the other gaps between
n ¼ 1 and n ¼ 2 and between n ¼ 3 and n ¼ 4 can be
closed (or are zero due to a degeneracy). In that case, we
have S1 ¼ S2 ¼ f1; 2g and S3 ¼ S4 ¼ f3; 4g.
Next, we discuss the approach to find the path between

two Hamiltonians l and l0. To construct the unitary trans-
formation Uk ¼ eiφkΛ of the Markov chain of deformations
of Hamiltonian l0, we first randomly sample a Hermitian
generator Λ ∈ CNb×Nb. We find the optimal momentum
dependence of φk by expanding the change of the measure
of similarity in Eq. (2) under jψ l0

nki → Ukjψ l0
nki in φk to

derive the gradient ascent expression

φk ¼ −η
1

Ñb

XNb

n¼1

X

n0∈Sn

Im½hψ l
nkjΛjψ l0

n0kihψ l0
n0kjψ l

nki� ð3Þ

with learning rate η ∈ Rþ. To ensure that the deformation
performed on the Hamiltonian is smooth, we only accept
the update if the maximum gradient of φk in momentum
space divided by the average value of jφkj is smaller than
the cutoff 2=jΔkj, where Δk connects neighboring points
on the k-grid used. We also compute the overall smoothness
of the states, mink;n

P
n0∈Sn

jhψ l0
nkjψ l0

n0kþΔkij2. If it drops
below 0.7, we abort and set Sl;l0 ¼ 0, see Supplemental
Material [54].
Besides smoothness of transformations, we also need to

make sure that the deformation parametrized by Λ and φk
preserves the symmetries of interest. Let us first focus on
unitary symmetries and denote the representation of g ∈ G
in momentum and in the Nb-dimensional space of the
Hamiltonian by RvðgÞ and Rψ ðgÞ, respectively. The con-
straint φR−1

v ðgÞkRψ ðgÞΛR†
ψðgÞ ¼ φkΛ can be imposed by

symmetrization,

Λφk →
1

jGj
X

g∈G
φR−1

v ðgÞkRψðgÞΛR†
ψ ðgÞ; ð4Þ

where jGj denotes the number of elements of G [55].
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We distinguish two manners of implementing this pro-
cedure: if we sum over the (discretized) Brillouin zone in
Eq. (2) and compute φk for all k, we can explicitly perform
the symmetrization in Eq. (4). This is what we do in the one-
dimensional (1D) examples. In higher dimensions, we can
speed up the algorithm using that topological properties are
encoded in the behavior of the Wilson operators [52,56,57]
along 1D cuts that go through all high-symmetry points.
Therefore, we can restrict the momenta k in Eqs. (1)–(3) to
these cuts. Furthermore, if diagonalization is the most
computationally expensive step, we can use the symmetries
to restrict this path to symmetry-inequivalent momenta only
[see, e.g., Fig. 4(a)]. To compute φR−1

v ðgÞk in Eq. (4) in that
case, we use that the symmetry of the Hamiltonian implies
that φR−1

v ðgÞk is given by Eq. (3) with Λ replaced by

RψðgÞΛR†
ψðgÞ on the right-hand side.

Finally, we discuss how to take into account the
symmetries of AZ classes. Imposing chiral symmetry,
ChkC† ¼ −hk, amounts to symmetrizing the generator
Λ → ðΛþ CΛC†Þ=2 right after sampling it. It is, thus,
only left to analyze the case of either TRS or PHS.
Focusing on the former (same applies to PHS), the
associated constraint φkΘΛΘ† ¼ −φ−kΛ is rectified by
replacing φk → ðφkΛ − φ−kΘΛΘ†Þ=2. If we want to
restrict the momentum points to an irreducible set, we
do not have to compute both φk and φ−k: using the TRS of
the system, the symmetrization can also be restated as
φk →

P
p¼� φp

kΛ
p=2, where Λ� ¼ ðΛ� ΘΛΘ†Þ=2 and

φ�
k are given by Eq. (3) with Λ replaced by Λ�.
Usually, Hamiltonians studied have additional sym-

metries beyond the subset of interest; in that case, the
reliability is increased when performing initial “kicks”:
unless the two samples l and l0 are already close according
to the measure in Eq. (2), we sample a few random, k-
independent unitary transformations Uj, j ¼ 1; 2;…Nkick

(properly symmetrized) and take the one that leads to the
largest value of Eq. (2) with jψ l0

n0ki → Ujjψ l0
n0ki. We also

noted that the iteration converges significantly faster if
every other gradient ascent step is replaced by performing a
k-independent update: we sample φ from a Gaussian
distribution and generate a symmetrized generator Λ.
Only if Eq. (2) with jψ l0

n0ki → eiφΛjψ l0
n0ki is larger than

before, we accept the update. Finally, note that our
approach does not require that all paths are identified
perfectly and we do not have to perform the path-finding
iteration for all combinations of l and l0. Because of the
stability to perturbations, it also works if we only iterate for
a randomly chosen fraction f ≤ 1 of pairs of samples,
reducing the computational cost.
Altland-Zirnbauer in 1D.—In the remainder, we apply

our ML scheme to a variety of symmetry classes. To start,
let us consider the AZ classes in 1D and Nb ¼ 2-band
models. The set of Hamiltonians we want to cluster are of
the Kitaev form [58],

hk ¼ Δ sin kσ1 þ ð−t cos k − μÞσ3: ð5Þ

Here σj are Pauli matrices and we set Δ ¼ t such that we
are left with only one dimensionless parameter μ=t to
parametrize the phase diagram. For topological classifica-
tion, there are different “ensembles” of Hamiltonians we
can embed Eq. (5) in.
Starting with class AIII, we only impose chiral symmetry

C ¼ iσ2. In Fig. 2(a), we illustrate the resulting kernel
associated with the effective graph after searching for
additional deformations between the Hamiltonians. We
see that the ML procedure correctly identifies that there
are adiabatic paths between Hamiltonians with μ=t < −1
and μ=t > 1; note that these paths are not present in the
dataset of Hamiltonians nor part of the parametrization (5),
as the direct overlap according to the similarity measure (1)
is very small between Hamiltonians in Eq. (5) with μ=t <
−1 and μ=t > 1. We now take this kernel as input for the
ML procedure of [35], which yields a set of eigenvalues λi
and associated eigenvectors ðψ iÞl, i ¼ 0; 1;…. The number
Nt of λi (exponentially) close to 1 is equal to the number of
distinct topological equivalence classes in the data; as
expected, we here get Nt ¼ 2, see inset in Fig. 2(a), with
a clear gap to the subleading eigenvalues. Furthermore, the
clustering according to topological features is visible in
the low-dimensional embedding l → ½ðψ1Þl;…; ðψNt−1Þl�.
Consequently, in our case here, ψ1 should be sufficient and,
indeed, we see in Fig. 2(b) that ψ1 correctly identifies the

(a)

(c) (d)

(b)

FIG. 2. (a) The kernel and resulting eigenvalues (inset) for the
Hamiltonian (5) embedded in class AIII, together with (b) the
dominant component ψ1 as a function of μ=t. (c) is the same as
(a) but for class A. For class BDI (d), we have Nt ¼ 3 dominant
eigenvectors (inset) that reveal three clusters (main panel), where
colors refer to values of μ=t as in (b) and the crosses to the k-
means centroids. Hyperparameters: Nk ¼ 50, ϵ ¼ 0.03, η ¼ 0.3,
Nkick ¼ 30, f ¼ 0.5.
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two topologically distinct regimes jμ=tj > 1 and
jμ=tj < 1.
Next, we consider class A, i.e., we do not impose any

symmetry. As in any odd dimension, all phases must be
equivalent and, indeed, the ML procedure finds paths
between all three regimes μ=t < −1, −1 < μ=t < 1, and
μ=t > 1, see Fig. 2(c), and there is only one dominant
eigenvalue (see inset).
Finally, let us embed Eq. (5) in class BDI, i.e., impose

both TRS, Θ ¼ iσ3K, with complex conjugation K, and
PHS, Ξ ¼ iσ1K. As can be seen in Fig. 2(d), we find three
quasidegenerate dominant eigenvalues and three clusters in
the associated low-dimensional embedding ½ψ1;ψ2�, cor-
responding to the three phases separated by gap closings at
μ=t ¼ �1. Although the stable topological Z-invariant of
class BDI is the same for μ=t < −1 and μ=t > 1, this is the
correct answer within the subspace of two-band models,
see Supplemental Material [54]. To investigate this further,
we have taken two identical copies of Eq. (5), yielding a
Nb ¼ 4-band model; in that case, the MLyields two sectors
corresponding jμ=tj > 1 and jμ=tj < 1, as anticipated.
Crystalline symmetries.—To appeal to topological

phases stabilized by crystalline symmetries, let us consider
the Nb ¼ 4-band model

hk ¼ sin kða1σ3 ⊗ τ1 þ a2σ0 ⊗ τ2Þ þ ½tð1 − cos kÞ
−m�σ0 ⊗ τ3 þ Δt cos kσ0 ⊗ ðτ0 þ τ3Þ þ δσ1 ⊗ τ3;

ð6Þ

where both σj and τj are Pauli matrices acting in different
spaces. This model exhibits inversion symmetry, Ph−kP† ¼
hk with P ¼ σ0 ⊗ τ3, which is the only symmetry we
impose. We focus on a1 ¼ a2 ¼ t and δ=t ¼ 2 in the
following. Allowing for gap closings only between the
pairs of bands n ¼ 1, 2 and n ¼ 3, 4, the phase diagram of
the approach is shown in Fig. 3(a). We see by comparison
with the eigenvalues ζkΘn of P at the Θ-invariant momenta
kΘ ¼ 0; π (right panel), that it correctly identifies that ζ01 þ
ζ02 and ζπ1 þ ζπ2 characterize the distinct topological equiv-
alence classes of band structures [59].
Referencing.—Recent schemes essentially indicate band

topology [60,61] by using constraints [5] and comparing to
a trivial reference subset, e.g., band structures that can be
obtained after Fourier transforming localized real-space
Wannier states. Our scheme is flexible to allow for
deformations up to an arbitrary reference and, as such,
has the potential to prove useful for the identification and
characterization of real materials, e.g., in combination with
high-throughput ab initio studies [62–64]. To exemplify
defining trivial reference sets, we consider the 1D model
with inversion symmetry in Eq. (6). Note that 1D is special
and there is no unique choice for this trivial subset; in
analogy to the Su-Schrieffer-Heeger chain, we here choose
states without a filling anomaly to be trivial [65–68], which

amounts to taking the set of momentum-independent,
inversion symmetric Hamiltonians as reference, see
Supplemental Material [54]. As a first step, we randomly
sample momentum-independent Hamiltonians with inver-
sion symmetry and apply our ML procedure to classify
them. As can be seen in Fig. 3(b), we find the correct
number of three different equivalence classes, which
correspond to the net parity ζ1 þ ζ2, with ζn ≡ ζnð0Þ ¼
ζnðπÞ. As a second step, we take one member of each of
those three classes of trivial states and add them to set of
Hamiltonians of Fig. 3(a). This allows us to determine
which of the phases in the phase diagram are adiabatically
connected to a trivial reference set (open circles) and, thus,
trivial, and which are not (solid circles, topological).
Two dimensions.—To illustrate higher dimensions, we

discuss the Bernevig-Hughes-Zhang (BHZ) model [69],

hk ¼ a1 sinðkxÞΓx þ a2 sinðkyÞΓy þMkΓ0; ð7Þ

(a) (b)

FIG. 3. The colors of the circles in (a) correspond to different k-
means labels obtained for m ¼ 15 × 14 samples of Hamiltonians
in Eq. (6) from the low-dimensional embedding of our ML
procedure (Nt ¼ 6 is found). Filled (empty) circles correspond to
Hamiltonians not connected (connected) to a trivial atomic
insulator. The table (right) shows the eigenvalues of P of the
phase diagram. (b) Sampling m ¼ 40 trivial insulators, we
identify three different classes (see eigenvalues, upper) correlated
with ζ1 þ ζ2 (scatterplot k means vs ζ1 þ ζ2, lower). We use
Nk ¼ 50, ϵ ¼ 0.03, η ¼ 0.8, Nkick ¼ 0, f ¼ 0.2 (a), f ¼ 0.5 (b).

(a) (b)

FIG. 4. (a) 1D closed path in the Brillouin zone (red solid)
going through the indicated high-symmetry points and its time-
reversal partner (blue dashed) that, due to symmetry, is effectively
also taken into account. (b) k-means labels for the BHZ model (7)
as a function of M for B > 0 (left) and B < 0 (right). Hyper-
parameters: Nk ¼ 180, ϵ ¼ 0.05, η ¼ 0.4, Nkick ¼ 50, f ¼ 0.5.
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where Mk ¼M−2B½2− cosðkxÞ− cosðkyÞ�, Γx ¼ σ3 ⊗ τ1,
Γy ¼ σ0 ⊗ τ2, and Γ0 ¼ σ0 ⊗ τ3. We focus on a1 ¼ a2 ¼
jBj and only impose TRS with Θ ¼ iσ2 ⊗ τ0K as sym-
metry. As discussed, we do not have to take into account all
2D momenta, but can focus on paths that go through all
high-symmetry momenta; for the BHZ model with TRS,
the latter are Γ, X, Y, and M [5], and we will take the path
shown in red in Fig. 4(a). To test our ML approach, we take
BHZ Hamiltonians with different values of M=jBj for both
signs of B as input. As can be seen in Fig. 4(b), it finds the
nontrivial paths between Hamiltonians with opposite signs
of B and identifies the three topologically distinct
phases [70,71].
Conclusion.—We presented a ML algorithm that iden-

tifies adiabatic paths between Hamiltonians, readily appli-
cable to any arbitrary symmetry class, thereby allowing one
to construct topological phase diagrams without super-
vision. We expect that future work based on reinforcement
or in combination with supervised learning can further
improve our approach. Because of the flexibility of the
algorithm, which we hope to also prove useful in the study
of interacting systems, it has the potential to deepen our
understanding of topological phases.
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Note added.—Recently, another work [72] appeared on
arXiv. In that work, phononic systems were clustered,
applying the procedure of [35] directly to randomly
sampled models, rather than combining it with an explicit
path-finding approach as we propose here. The latter is
required to explore the full space of deformations in a given
symmetry class.
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