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Amorphous solids exhibit quasiuniversal low temperature anomalies whose origin has been ascribed to
localized tunneling defects. Using an advanced Monte Carlo procedure, we create in silico glasses spanning
from hyperquenched to ultrastable glasses. Using a multidimensional path-finding protocol, we locate
tunneling defects with energy splittings smaller than kBTQ, with TQ the temperature below which quantum
effects are relevant (TQ ≈ 1 K in most experiments). We find that as the stability of a glass increases, its
energy landscape as well as the manner in which it is probed tend to deplete the density of tunneling
defects, as observed in recent experiments. We explore the real-space nature of tunneling defects, and find
that they are mostly localized to a few atoms, but are occasionally dramatically delocalized.
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The theory of low temperature properties of perfect
crystals stands as one of the most profound early tests of
the power of quantum statistical mechanics. In particular,
Debye’s calculation of the observed T3 behavior of the low
temperature specific heat highlighted the importance of long
wavelength phonons as low energy excitations in ordered
solids [1]. Given that the wavelength of populated phonon
modes around T ∼ 1 K is significantly longer than the
interparticle distance in a solid, it came as a major surprise
in 1971 when Zeller and Pohl [2] measured large deviations
from the expected Debye behavior of the specific heat and
the thermal conductivity of vitreous silica, selenium, and
germanium-based glasses. An explanation for this puzzling
observation was almost immediately put forward by
Anderson, Halperin, and Varma [3], and Phillips [4].
They posited that the disorder intrinsic to amorphous solids
causes their energy landscape to have many minima. Rare,
nearly degenerate, adjacent local minima support tunneling
defects or two-level systems (TLS) with energy splittings
of the order of 1K, which provide a large excess contribution
to the specific heat and a new mode of scattering that
determines the thermal conductivity. In the subsequent
decades, the behavior described by Zeller and Pohl was
observed in numerous other amorphous materials, and the
TLS theory has withstood essentially all experimental tests
[5–9]. Despite this great progress, the microscopic real-space
structure of the tunneling defects remains debated, as do the
factors that determine their density and distribution in
amorphous solids [10–22].

A powerful platform for addressing these issues is the
use of computer simulation to prepare amorphous materials
in silico and to interrogate the simulated energy landscape
for TLS [23]. This program was initiated by Stillinger and
Weber [24,25], then carried out more extensively by Heuer
and Silbey [26–29], nearly three decades ago. Limited by
the computational power and algorithms available back
then, they created computer glasses with cooling rates
roughly nine orders of magnitude larger than in laboratory
settings. They were able to locate only a handful of TLS
with the requisite tunnel splittings, necessitating uncon-
trolled extrapolations. The situation then improved incre-
mentally [30–33], although the algorithmic ability to
simulate glasses which are cooled in an experimentally
realistic way has remained out of reach until very recently.
This limited greatly our microscopic understanding of the
universal anomalous thermal behavior of low temperature
glasses from a computational viewpoint.
In this Letter, we leverage the remarkable ability of the

swap Monte Carlo algorithm to produce in silico amor-
phous materials with fictive temperatures that range from
those found in typical experiments to the significantly
slower rates found in recent vapor deposition studies [34].
We find a dramatic depletion of active TLS (those with a
tunnel splitting ∼1 K) with decreasing quench rate, as
found in recent experiments [35–39], with the notable
exception of old amber glasses [40]. We use a state-of-the-
art reaction path-finding protocol [41,42] to efficiently
locate double-well potentials in the multidimensional
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potential energy landscape, yielding a direct sampling of
tunneling states with sufficient statistics to avoid any
extrapolation. We determine the degree of localization of
individual TLS, providing a detailed, real-space under-
standing of how atoms participate in tunneling motion and
how the thermal exploration of the energy landscape in
well-annealed amorphous materials determines the density
of tunneling centers.
Glass preparation.—Past works on the landscape of

low temperature glasses focused on simple models for real
materials such as NiP [26], Argon [30], and silica [32,33].
Our goal is to understand how glass preparation affects the
density of TLS within a single model. We study a poly-
disperse mixture of particles interacting via an inverse power
law potential [34]. Our choice is motivated by the fact that
low temperature anomalies are observed in glasses, regard-
less the material. Given the diversity of models, we choose
one for which swap Monte Carlo enables maximally
efficient thermalization on the computer over a range of
temperatures at least as wide as in experiments [34].
We provide minimal details on the system and measures

of equilibration (see the Supplemental Material [43] for
details). We simulate a nonadditive polydisperse mixture of
N ¼ 1500 particles of mass m. Two particles i and j
separated by a distance rij interact via the potential

vðrijÞ ¼ ϵ

�
σij
rij

�
12

þ ϵFðrij=σijÞ; ð1Þ

only if rij < rcut ¼ 1.25σij, σij being the nonadditive
interaction length scale. The function F is a fourth-order
polynomial which guarantees continuity of the potential up
to the second derivative at rcut. We characterize the physical
classical dynamics of the model using molecular dynamics
(MD) with energies and lengths expressed in units of ϵ
and the average diameter σ, respectively. Times measured
during MD simulations are expressed in units of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ=mσ2

p
.

Number density is set to ρ ¼ 1. The relaxation time τα of
the equilibrium fluid is measured from the self-intermediate
scattering function Fsðk ¼ 7.0; ταÞ ¼ e−1. The onset of
glassy dynamics, signaled by deviations from Arrhenius
behavior, takes place at To ¼ 0.18, where ταðToÞ≡ τo,
and the mode-coupling crossover temperature is TMCT ¼
0.104 [34].
We analyze in silico glasses by preparing fully equili-

brated configurations at various preparation temperatures
Tf using the swap Monte Carlo algorithm, which utilizes
the exchange of particles’ diameters in addition to standard
translational moves, leading to a massive thermalization
speed-up. Our implementation is that of Ref. [44]. The
configurations are then rapidly cooled to lower temper-
atures using regular molecular dynamics. Therefore, Tf

represents the “temperature at which the glass would find
itself in equilibrium if suddenly brought to it from its given
state,” which is precisely the definition of Tool’s fictive

temperature [45]. The temperature Tf characterizes the
degree of stability of the glasses, see Fig. 1(a). In experi-
ments, Tf would be determined by the cooling rate
[46,47], or the substrate temperature in a vapor deposition
experiment [48–52]. We present results for glasses in wide
range of stabilities: poorly annealed (hyperquenched)
glasses [Tf¼0.092where logðτα=τoÞ ¼ 4.9, slightly below
TMCT], liquid-cooled experimental glasses [Tf¼0.07≃Tg,
where logðτα=τoÞ ¼ 10.7], and ultrastable glasses [Tf ¼
0.062, where logðτα=τoÞ ¼ 14.8]. To obtain statistically
significant results, we analyze Ng independent samples
(Ng ¼ 200, 50, 15 for increasing Tf).
Landscape exploration.—We identify transitions

between nearby minima, or double-well potentials
(DWPs) in the glasses. Briefly, starting from the configu-
rations equilibrated at Tf, we run MD simulations at
TMD ¼ 0.04, which is sufficiently low to confine each
glass in a single metabasin, but high enough that the system

(a)

(b)

(c)

FIG. 1. (a) Glasses are prepared at equilibrium (black line) at
temperatures Tf ¼ 0.092, 0.07, 0.062 (bullets), from hyper-
quenched to ultrastable. We follow their potential energy after
rapid quenches (colored lines). (b) Sketch of the potential energy
landscape. Double-well potentials are detected with molecular
dynamics simulations at TMD ¼ 0.04 (blue). (c) A detected
double-well potential VðξÞ. The classical asymmetry ΔV, acti-
vation energy Va, energy barrier Vb ¼ Va − ΔV=2, the energy
levels, E1 and E2, of the ground-state doublet, and the tunnel
splitting, E ¼ E2 − E1, are illustrated.
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can rapidly visit distinct minima (inherent structures)
within the metabasin [23], see Fig. 1(b). Details are given
in the Supplemental Material [43].
By sampling the inherent structures along MD trajecto-

ries [30], we obtain a library of visited minima, as well as
the pairs of them that are dynamically connected. We use
the isoconfigurational ensemble [53]: for each of the Ng

independent configurations, we run up to 200 MD simu-
lations, each initialized with different velocities. The
number and duration of isoconfigurational runs is large
enough for the probability distribution function (pdf) of the
inherent structures potential energy, and the number of
transitions, to reach stationarity. While we reach conver-
gence of the pdfs, all possible minima are not sampled, and
their numbers increase with additional runs. We however
sample a significant number of minima: 13 252, 26 898,
848 698 for Tf ¼ 0.062, 0.07, 0.092, respectively. As
shown below, this is enough to directly determine the
density of tunneling TLS.
We select transitions between adjacent minima as

described in the Supplemental Material [43]. We compute
the minimum energy path connecting each pair of minima
using a climbing image nudged elastic band (NEB)
algorithm [41,42], which ensures the accurate determina-
tion of the saddle point, and provides a smooth energy
profile. Occasionally, especially for Tf ¼ 0.092, the NEB
energy profile contains intermediate minima. In such cases,
we apply an iterative method to split the energy profile into
distinct DWPs, which are then analyzed similarly to the
other ones.
We parametrize a DWP by its potential energy VðξÞ

along the minimum energy path, with ξ ¼ 0, 1 correspond-
ing to the two minima (we arbitrarily choose ξ ¼ 0 for the
deepest minimum), see Fig. 1(c). A DWP is characterized
by its asymmetry ΔV ¼ Vð1Þ − Vð0Þ, energy barrier Vb ¼
Va − ΔV=2, where Va is the activation energy, and the
distance d between minima. The distance is calculated
along the reaction coordinate given by the NEB, as the
sum of Euclidean distances between images of the system:
d2 ¼ P

i;μ d
2
i;μ, where di;μ is the displacement of particle i

in direction μ ¼ x, y, z. The participation ratio, PR ¼
d4=ðPi;μ d

4
i;μÞ, characterizes the number of particles

involved in the transition.
We present in Fig. 2 the statistics of the DWP param-

eters. The pdfs for Tf ¼ 0.062 and 0.07 agree quantita-
tively, within noise, while we observe an evolution for
Tf ¼ 0.092. In particular, the pdfs of asymmetries and
energy barriers are almost exponential in all glasses. The
mild dependence of these tails on Tf may stem from
the fact that the sampling temperature TMD sets a limit on
the DWPs that can be detected, independently of Tf (see
the Supplemental Material [43] for the effect of TMD).
While the distribution of energy asymmetry is exponential
at high energies ΔV, it becomes flat at low energies where

TLS are found (see Fig. S6). The pdfs of distances (not
shown) and participation ratios vary more significantly
between Tf ≤ 0.07 and Tf ¼ 0.092. Since d ∝

ffiffiffiffiffiffi
PR

p
, an

increase of PR will affect the distribution of d. We instead
study the pdf of d=

ffiffiffiffiffiffi
PR

p
. This quantity can be interpreted as

an average displacement of the particles that participate in
the transition. On average, the number of particles involved
in DWPs is larger in poorly annealed glasses, while the
displacements of individual particles remain comparable.
To our knowledge, the dependence of the quench rate
on DWPs classical parameters has not yet been reported.
Note that TLS typically correspond to DWPs with very
small ΔV and relatively large Vb. The tunnel splitting
stems from nontrivial correlations between the classical
parameters [30], thus the pdfs of classical parameters
alone are not informative on quantum tunneling (see the
Supplemental Material [43]).
Density of two-level systems.—At sufficiently low tem-

peratures, thermal activation over the energy barrier Vb is
suppressed, and quantum tunneling becomes important
[54]. In our analysis, we reduce the problem to a one
dimensional effective Schrödinger equation along the
reaction coordinate. Following Vineyard [55], the effective
mass remains m, with a reaction coordinate x ∈ ½0; d�.
Using the normalized variable ξ ¼ x=d, and scaling ener-
gies by ϵ, we obtain

−
ℏ2

2md2ϵ
∂2
ξΨðξÞ þ VðξÞΨðξÞ ¼ EΨðξÞ; ð2Þ

where the “quantumness” of the problem is controlled
by the dimensionless mass m̃ ¼ mσ2ϵ=ℏ2 (see Fig. 3). In
general, the Laplacian should take into account curvature

(a) (b)

(c) (d)

FIG. 2. Probability distribution functions of DWP parameters
as a function of glass preparation temperature Tf: (a) asymmetry
ΔV, (b) energy barrier Vb, (c) distance d normalized by

ffiffiffiffiffiffi
PR

p
,

which characterizes the typical individual displacement of par-
ticles that participate actively in a double-well transition, and
(d) participation ratio (PR). Lines are a guide for the eye.
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effects, which we neglect here.The potential VðξÞ obtained
from the NEB is defined in ξ ∈ ½0; 1�. To solve Eq. (2), we
extrapolate it outside this interval (see the Supplemental
Material [43]).
We solve Eq. (2) for all DWPs. We compute the first

two energy levels, E1 and E2, of the double well and
define the tunnel splitting E ¼ E2 − E1. We illustrate in
Fig. 1(c) the two energy levels and tunnel splitting of a
DWP. The tunnel splitting E is the relevant parameter for
low temperature properties. The transitions that occur by
quantum tunneling have a tunnel splitting E ∼ T [6].
These particular DWPs are called tunneling two-level
systems (TLS).
We characterize the distribution of TLS using a cumu-

lative distribution of tunnel splittings nðEÞ, defined as the
number of DWPs with tunnel splitting smaller than E,
normalized by the number of particles N in the glass, and
the number of independent samples Ng. In TLS theory,
nðEÞ can be expanded as nðEÞ ≃ n0EþOðE2Þ for small E,
the specific heat at low temperature is linear with T, and n0
enters the prefactor [3,6].
In order to estimate the density n0 of TLS and its

dependence on glass stability, we plot nðEÞ=E as a function
of tunnel splitting E in Fig. 3. All curves indicate a
saturation to a plateau value, n0, at low E. The existence
of a plateau value demonstrates our ability to directly
estimate the density of TLS n0 without any uncontrolled
extrapolation. Data on tunneling rates [56] and distribution
of tunneling matrix elements Δ0 are presented in the
Supplemental Material [43].
Our key result is that the TLS density n0 [as estimated by

nðEÞ=E in the range 10−3–10−4] decreases by two orders of
magnitude from hyperquenched to ultrastable glasses. To
our knowledge, this constitutes the first numerical evidence
for a significant suppression of TLS with increasing glass
stability.

Microscopic nature of TLS.—How many particles are
involved in the tunneling motion of a TLS [30–33]? We
analyzed how the participation ratio of transitions correlates
with the tunnel splitting E. We find that the participation
ratio of low temperature active TLS with tunnel splittings
E ∼ 10−3–10−4 varies from 1 to 200 (see the Supplemental
Material [43]). The higher participation ratios (PR ∼ 200)
are found in hyperquenched glasses, while in ultrastable
glasses the participation ratio rarely exceeds ∼30. We
provide systematic numerical evidence that TLS active at
low temperature are typically very localized, but occasion-
ally associated with collective excitations. We provide two
snapshots in Fig. 4, corresponding to a collective TLS (left)
and a very localized TLS (right) identified in a hyper-
quenched glass.
Discussion.—Our study of tunneling TLS in a simple

computer model demonstrates their importance to under-
stand low temperature glass anomalies. We show that the
density n0 of TLS directly controls the linear temperature
dependence of the specific heat at low temperatures.
Several recent works advocated the idea that quantized
low-frequency harmonic modes alone could explain this
behavior [10,18,57–61]. These soft modes are known for
our glasses [62], but we find that their contribution to the
low temperature specific heat is subdominant (see the
Supplemental Material [43]), suggesting that the specific
heat of structural glasses is dominated by tunneling TLS, as
originally proposed in [3,6].
To relate our data to experiments we convert simulation

units into physical ones. The temperature scale below
which quantum effects become important is obtained by
comparing the thermal wavelength to the interparticle
distance: TQ ¼ ð2πℏ2Þ=ðmσ2kBÞ. We consider DWPs with
E < kBTQ as low temperature active TLS, and their total
number is nactive ¼ NNgnðE ¼ kBTQÞ.
A detailed analysis on experimental comparisons is

presented in the Supplemental Material [43]. We first

FIG. 3. Cumulative distribution of energy splitting nðEÞ di-
vided by E, from hyperquenched to ultrastable glasses (top to
bottom). The values m̃ are chosen for comparison with real
materials. The plateau at small E affords a direct determination of
the TLS density n0, which is suppressed by two orders of
magnitude as glass preparation is varied.

FIG. 4. Snapshots of TLS with low tunnel splitting E for Tf ¼
0.092 and m̃ ¼ 30000. (a) PR ≈ 126 with E ¼ 8.9 × 10−5.
(b) PR ≈ 1.6 and similarly low E ¼ 5.4 × 10−5. The size and
color of particles are proportional to their displacement between
the initial and final configurations of the TLS, normalized to the
highest displacement.

PHYSICAL REVIEW LETTERS 124, 225901 (2020)

225901-4



consider Argon parameters: σ ¼ 3.4 × 10−10 m, ϵ=4 ¼
1.65 × 10−21 J, m ¼ 6 × 10−26 kg [30]. This gives
Tg ∼ 32 K, TQ ∼ 0.73 K, and m̃ ∼ 4000. For this choice,
we estimate from Fig. 3 nsim0 ∼ 4, 0.4, 0.04 for increasing
glass stability. This gives nexp0 ∼ 1049; 1048; 1047 J−1 m−3.
Active TLS have E < kBTQ ¼ 0.0015ϵ and we find
nactive ¼ 1008, 291, 61 such TLS for Tg ¼ 0.092, 0.07,
0.062, respectively. A second choice motivated by NiP
metallic glasses [26] would be to use Nickel as a reference,
for which σ ¼ 2.21 × 10−10 m, ϵ ¼ 6.14 × 10−20 J, m ¼
1.02 × 10−25 kg [63]. In this case, we have Tg ∼ 298 K,
TQ ∼ 0.9 K, and m̃ ∼ 30000. For this value of m̃, we find
nsim0 ∼ 60, 6, 0.6 for Tf ¼ 0.092, 0.07, 0.062, yielding
nexp0 ∼ 1050; 1049; 1048 J−1 m−3. Active TLS have E <
kBTQ ¼ 0.0002ϵ and we find nactive ¼ 248, 46, 28 such
TLS for Tg ¼ 0.092, 0.07, 0.062, respectively.
Experimentally, a value of n0 ∼ 1046 J−1 m−3 is reported

[6,7]. Our estimation for Tf ¼ 0.07 is larger by a factor
∼102–103 (Argon and Nickel, respectively). It is difficult to
rationalize this discrepancy but we can offer several hypoth-
esis. One possibility is that we include in our estimates all
DWPs detected at temperature TMD ¼ 0.04 ≫ TQ, while,
experimentally, the glass is directly brought to TQ and only a
small fraction of TLS that lie at the bottom of the energy
metabasin would be excited. Furthermore, not all TLSwould
tunnel on the relevant timescales: it is known that n0 ∼ logðτÞ
where τ is the observation time at TQ [6]. This should persist
up to the timescale of complete exploration of the energy
landscape. Our exploration protocol atTMD ≫ TQ artificially
sets τ larger than this cutoff (see the Supplemental Material
[43] for the tunneling rates of TLS). Another explanation
could be that our model is too simple to describe real
molecular materials, for example network glasses.
Since we analyze a single model, the fundamental question
of universality in TLS density remains unanswered.
Analyzing different glass-forming models will be crucial to
answer this question.
The reduction of n0 by two orders of magnitude when

moving from hyperquenched to ultrastable glasses is robust
and in good agreement with recent experiments [36,39]. We
show that for a given glass-forming model, glass prepara-
tion affects dramatically the density of TLS. Our results
demonstrate that glass ultrastability (rather than potential
anisotropy of the vapor-deposited samples) is responsible
for the depletion of TLS.
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