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We study effects of quantum fluctuations on two-dimensional pþ ip superfluids near resonance. In the
standard paradigm, phase transitions between superfluids and zero density vacuum are continuous. When
strong quantum fluctuations near resonance are present, the line of continuous phase transitions terminates
at two tricritical points near resonance, between which the transitions are expected to be first-order ones.
The size of the window where first-order phase transitions occur is shown to be substantial when the
coupling is strong. Near first-order transitions, superfluids self-contract due to phase separations between
superfluids and vacuum.
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Introduction.—Superfluids and superconductors in p-
wave channels with potentially topological features have
attracted broad interest from condensed matter physics,
atomic and molecular physics, and quantum computation
communities. Compared to s-wave superfluids, superfluids
with p-wave pairing embody much richer physics due to
more complex manifolds of order parameters as well as
possible nontrivial topological invariants and edge modes.
In particular, two-dimensional (2D) superfluids with
pþ ip pairing support a topological phase [1,2]. Vortex
excitations in the topological phase obey non-Abelian
statistics [3–6], which can be further used for quantum
computation [7,8].
p-wave superfluidity was observed long ago in liquid

3He [9]. In ultracold Fermi gases, p-wave pairing can be
realized by preparing fermions in a single pseudospin
state, so that s-wave interactions are strongly suppressed
by the Pauli exclusion principle. p-wave scattering can then
be further enhanced by tuning the system to a Feshbach
resonance [10] with p-wave molecules. p-wave Feshbach
resonance has been observed in 40K and 6Li gases [11–16]
despite of particle losses. These experiments have further
inspired theoretical proposals on potential realizations of
p-wave superfluids in Fermi gases [17,18]. In the mean-
time, progress has been made on theoretical understandings
of p-wave superfluids at resonance. It is appreciated that
various phase transitions, quantum or thermal, between
different superfluid phases can further occur near
resonance [19–23]. Most of these studies focus on the
limit where quantum fluctuations are perturbative, and the
superfluids can be well characterized by mean-field studies.
Furthermore, collisional dynamics and relaxation of
molecules in different dimensions have been discussed

[24–26]. Fascinating scale symmetric few-body states have
also been proposed [27]. Very recently, Fermi liquid effects
in p-wave gases have been further explored [28].
In the presence of strong quantum fluctuations, however,

superfluids can potentially exhibit highly non-mean-field
features due to the breakdown of mean-field theories.
Therefore, it is necessary to thoroughly examine such
possibilities and identify regimes where strong quantum
fluctuations in p-wave superfluids are dominating. This is
what we intend to achieve in this Letter. Let us note that there
have been a few recent attempts to investigate the role of
quantum fluctuations in 2D resonantly interacting p-wave
Fermi gases [29–31]. In Ref. [29], the authors have
illustrated that low density homogeneous p-wave superfluids
can become unstable at resonance when quantum fluctua-
tions at a two-loop level are taken into account. In Ref. [30],
fluctuation effects from a particular set of ring diagrams are
taken into account when deriving the number equation for
fermions but are excluded in the gaplike equation for pairing
fields; the renormalization effects and instability highlighted
in Ref. [29] therefore were not captured. The numerical
variational method in Ref. [31] does show some evidence of
instability; however, limitations of the specific numerical
scheme remain to be further scrutinized.
Results.—In this Letter, we analyze the consequence of

strong quantum fluctuations in 2D pþ ip superfluids near
resonance. We focus on quantum phase transitions between
vacuum and the U(1) symmetry-breaking superfluids as
chemical potential μ is tuned across its critical value
(Fig. 1). In the standard paradigm, the ground state is a
weakly interacting Bardeen-Cooper-Schrieffer (BCS)
superfluid on one side of the resonance and a Bose-
Einstein condensate (BEC) of diatomic molecules on the
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other side. Phase transitions between superfluids and zero
density vacuum driven by chemical potentials are therefore
expected to be continuous, and belong to either the free-
fermion universality class on the weakly attractive BCS
side or the free-boson universality class on the BEC
side [32,33].
Effective interactions of the emergent bosonic pairing

fields, usually represented by a quartic term in the standard
effective potential, always appear to be repulsive at the
mean-field level. Near resonance when quantum fluctua-
tions are strong, we find that these interactions are sub-
stantially renormalized and can even become attractive.
The interactions can be shown to change from repulsive
to attractive when approaching resonance from either side.
As a result, continuous phase transitions from vacuum to
superfluid phases terminate at a pair of tricritical points
located on two sides of resonance as the system is tuned
close to resonance. Between these tricritical points, quan-
tum transitions driven by chemical potentials are of the first
order [34–36], where the particle density jumps from zero
to a finite value [37]. This indicates self-contracted pþ ip
superfluids near resonance as a consequence of phase
separation between a finite density superfluid and a zero
density vacuum. In trap geometries studied in cold gas
experiments, the self-contracted liquid-like superfluids

exhibit sharp-edged spatial density profiles, in stark con-
trast to the conventional smooth Thomas-Fermi density
profiles of quantum gases (Fig. 1).
We study these phase transitions by employing the

following Hamiltonian for 2D pþ ip Fermi gases coupled
to bosonic molecules,

H ¼
X
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cð†Þk and bð†Þk represent fermions and bosons, respectively.
k� ¼ kx � iky, Ω is the total area of the system, μ is the
fermion chemical potential, ϵ is the bare detuning, and g0 is
the bare interchannel coupling. The bare three- and four-
body interactions (u3 and u4) are zero but will be naturally
induced in the course of renormalization when quantum
fluctuations are integrated out. To facilitate later discus-
sions on the renormalization group equation (RGE) analy-
sis, we keep these terms explicitly in the Hamiltonian. For
discussions on first-order transitions, we will also have to
include six-body interaction u6 that is not shown explicitly
here. Note that the detuning from resonance can be more
conveniently measured by scattering area A defined as
A ¼ ½−ðϵ=g20Þ þ ðΛ2

0=2πÞ�−1. Resonance occurs when
A → ∞, i.e., ϵ ¼ g20Λ2

0=2π with Λ0 being the UV cutoff.
To study phase transitions, we analyze the effective

potentialΦ associated with Hamiltonian (1) as a function of
order parameter Δ ¼ g0hb0i=

ffiffiffiffi
Ω

p
. The effective potential

has the general form

Φ ¼ rjΔj2 þ V4jΔj4 þ V6jΔj6 þ � � � ð2Þ

r, V4 and V6ð> 0Þ are functions of μ, 1=A and microscopic
parameters like g0, etc. These functions can be conveniently
obtained by taking into account of quantum fluctuations via
the RGEs. Following the standard Landau theory [38], the
order of phase transitions depends on the sign of V4. When
V4 is positive, continuous phase transitions occur at r ¼ 0;
when V4 is negative, first-order phase transitions occur at
r ¼ V2

4=ð4V6Þwith V6 > 0. Thus, r ¼ V4 ¼ 0 corresponds
to tricritical points. We will employ these elementary
relations to identify transitions and tricritical points.
For our model, r is proportional to bosonic chemical

potential μB (up to a factor Z, see the methods section), with
μB ¼ 2μ on the BCS side and μB ¼ 2μþW on the BEC
side, and W being the binding energy. If V4 is positive,
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FIG. 1. (a) Schematics of superfluid phases in the μ vs 1=A
plane. The horizontal axis is the inverse of p-wave scattering area
A measuring the detuning. At resonance, 1=A ¼ 0. In the
standard paradigm, continuous quantum phase transitions occur
when μ reaches a critical value (bold solid line). Shaded areas
represent weakly interacting regions. (b) Near resonance when
strong quantum fluctuations are present, the actual transitions
become first order (dashed line). Tricritical points (black dots) on
each side of resonance terminate the lines of continuous tran-
sitions and separate them from the discontinuous ones. As a
result, the weakly interacting regime (light gray) is shifted away
from resonance while a strongly fluctuating regime (dark gray)
emerges. In (c) and (d), we illustrate the density profile (solid
curve) of superfluids in a trap (dashed curve) away and near
resonance respectively. From the center towards the edge of the
trap, the local chemical potential μðrÞ follows the corresponding
paths in (b).
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continuous phase transitions occur at μB ¼ 0, leading to the
standard paradigm in Fig. 1(a). In the mean-field theory,
one can indeed show that V4 ∝ lnðΛ0=ΛIRÞ > 0, implying
repulsive interactions of bosonic fields and continuous
phase transitions. Here ΛIRð≪ Λ0Þ is an infrared (IR) scale
relevant to superfluids and will be specified later. Far away
from resonance, quantum fluctuations can be treated
perturbatively, and V4 remains positive. However, we find
that quantum fluctuations become very strong near reso-
nance and substantially renormalize V4. As a result, V4 can
become negative and phase transitions become of the
first order.
To identify tricritical points separating the continuous

and first-order transitions, we compute, for given A and g0,
V4ðAÞ along the μB ¼ 0 transition line by numerically
solving a set of coupled RGEs (see the methods section).
From the data of V4, we pinpoint the value of A� at which
V4ðAÞ changes from repulsive (V4 > 0) to attractive
(V4 < 0). The values of A� are then identified as tricritical
points that terminate the continuous transitions when
approaching resonance; beyond these points, the system
undergoes first-order transitions. We plot these tricritical
points A� for different g0 and their scaling behavior in
Fig. 2. Along the transition line μB ¼ 0 but away from
resonance (jAj < jA�j), the phase transition is continuous
with V4ðAÞ > 0; while close to resonance (jAj > jA�j),
V4ðAÞ is negative and the phase transition is first order. For
small and even intermediate two-body couplings g0 ≲ 1,
the general structure of the RGEs suggests the following
scaling behavior of A�ðg0Þ

jA�ðg0Þj−1 ∼ g−20 e−c=g
2
0 : ð3Þ

Numerically, we find that c ≈ 5.035 on the BCS side and
c ≈ 9.662 on the BEC side. Equation (3) is one of the
central results of our analyses. When g0 → 0, the tricritical

points effectively merge at resonance as A� → ∞ on both
sides, and the window of first-order transitions vanishes, a
characteristic of the mean-field theory. For small but finite
values of g0, the window of the first-order phase transition
is exponentially small but it becomes very substantial when
g0 increases.
To further determine the first-order transition line μcðAÞ

between tricritical points, we numerically solve, for a
given A, the equation of transition condition rðμcÞ ¼
V2
4ðμcÞ=ð4V6Þ using the data of V4 and V6 obtained from

the RGEs. The resultant first-order transition line is
presented in Fig. 3(a). Next, we extend our analysis to
superfluids above this transition line. In Fig. 3(a), we also
present the fluctuation dominant region in the phase
diagram by computing the chemical potential μ�ðAÞ, at
which V4ðμ�Þ ¼ 0 for a given scattering area A. V4 is
positive for μ > μ�ðAÞ, where mean-field results remain
qualitatively correct and quantum fluctuations do not play a
very significant role. V4 is negative for μ < μ�ðAÞ, where
quantum fluctuations strongly renormalize the interactions
and the physics is dominated by strong fluctuations. The
line of μ�ðAÞ represents a crossover between the strongly
and weakly fluctuating regimes.
To understand superfluids with a given density, we map

the phase diagram onto the density plane in Fig. 3(b) using
the equation of state. For continuous phase transitions,
homogeneous superfluids exist at an arbitrarily low density.
When phase transitions are of the first order, fermion
density changes discontinuously at critical chemical poten-
tial μcðAÞ. Consequently, homogeneous superfluids can
only exist with densities higher than a threshold ncðAÞ.
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FIG. 2. Tricritical points for different g0 are labeled by squares
and dots on the BCS and BEC side, respectively. They are fitted
to Eq. (3) represented by the straight lines. Phase transitions
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points, and continuous otherwise.
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FIG. 3. (a) Phase diagram in the μ vs 1=A plane. Vertical dashed
line marks resonance. First order phase transition line μcðAÞ
(lower dashed curve) is separated from continuous phase tran-
sition line (solid curve) by a tricritical point (dot) on each side of
resonance. (The tricritical point on BCS side is outside the range
of this plot.) The upper dotted-dashed curve represents the
crossover μ�ðAÞ between strong and weak fluctuation regimes.
Below the crossover line, quantum fluctuations dominate in the
superfluid phase. (b) Phase diagram mapped to n vs 1=A plane
from (a) using equation of state (4). The dashed curve represents
the critical density ncðAÞ in first-order transitions, below which
superfluids are self-contracted liquidlike droplets with constant
density nc. Note that at a fixed low density as the scattering area is
varied continuously, superfluids can undergo two consecutive
transitions as illustrated by the horizontal trajectory.
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In other words, at n < ncðAÞ superfluids are self-contracted
quantum liquids. Practically, at a fixed low density when
approaching resonance, a superfluid first undergoes a phase
separation from vacuum forming a self-contracted droplet
at a critical scattering area before reaching resonance; after
crossing resonance, it makes another transition back to a
homogeneous state at another critical scattering area as
shown in Fig. 3(b). The self-contracted superfluids or phase
separation process can be considered as a clear manifes-
tation of attractive interactions between bosonic pairing
fields due to strong fluctuations.
We compute the equation of state from the effective

potential via the relation n ¼ −∂Φ=∂μ and ∂Φ=∂jΔj ¼ 0.
We obtain the critical density ncðAÞ at the first-order
transition line [i.e., at ΦðΔÞ ¼ 0]:

nc ≈ 2

ffiffiffiffiffiffiffiffiffiffi
jμcBj
V6g60

s �
1þ g20

π
ln

Λ0ffiffiffiffiffiffiffiffijμcBj
p �

3=2

; ð4Þ

where μcB is the chemical potential for the bosonic pairing
field along the first-order transition line μcðAÞ [39].
Methods.—In the effective potential (2), r, V4, and V6,

which depend on various quantum fluctuations, are directly
related to μB, and interactions u4 and u6. To establish the
relations, we consider a Hamiltonian defined at scale
Λ ¼ Λ0e−s, with scale dependent parameters, ϵðsÞ,
u4ðsÞ, u6ðsÞ, etc., so that Hamiltonians defined at different
scales lead to the same effective potential. These scale
dependent parameters then follow the standard RGEs that
effectively take into account renormalization effects due to
quantum fluctuations [40,41].
In the IR limit, the solution to the RGEs of these

parameters can directly yield the values of r, V4, and
V6. For instance, at scale ΛIR ¼ Λ0e−sIR relevant to our
effective theory (see details below), r ¼ −μBg−20 ½ZðΛIRÞ�−1,
V4¼u4ðΛIRÞg−40 ½ZðΛIRÞ�−2, and V6 ¼ u6ðΛIRÞg−60 ×
½ZðΛIRÞ�−3. The field renormalization ZðΛIRÞ plays an
important role in our discussions because the effective
potential is expressed in terms of Δ proportional to bare
fields defined at UV scale Λ0.
On the BEC side (A > 0), the RGEs along the continu-

ous transition line (μB ¼ 2μþW ¼ 0) are

du4
ds

¼−
2g2u4

πð1þW̃Þþ
4g4

πð1þW̃Þ3þ
2g2u3

πð1þW̃Þ2−
2u24
π

; ð5Þ

dũ6
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3g2ũ6
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¼−
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1−2μ̃
; ð6Þ

dW̃
ds

¼2W̃;
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¼−
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2π

1

1−2μ̃
;

dμ̃
ds

¼2μ̃; ð7Þ

du3
ds

¼ −
16g4

3πð1þ W̃Þ2 −
11g2u3

3πð1þ W̃Þ −
2u23
3π

: ð8Þ

Here, we define dimensionless quantities μ̃ ¼ μ=Λ2, W̃ ¼
W=Λ2, and ũ6 ¼ u6Λ2. Note that binding energyW, instead
of microscopic detuning ϵðsÞ, appears in the RGEs when
the system is off resonance. And we have kept the most
relevant field renormalization effect in u6.
On the BCS side (A < 0), although there are no physical

bound states, quasibinding energy W0 < 0 appears in the
RGEs. The RGEs of u4 and u3 on the BCS side at the
continuous transition line (μB ¼ 2μ ¼ 0) take the following
form,

du4
ds

¼ −
2g2u4
π

þ 4g4

π
þ 2g2u3

π
−

2u24
πð1 − 4W̃0Þ ; ð9Þ
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�
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π
þ 8g2u3

π
þ 2u23

π

�
−
g2u3
π

: ð10Þ

Here W̃0 ¼ W0=Λ2 satisfies dW̃0=ds ¼ 2W̃0. Binding
energy W and quasibiding energy W0 are both related to
the scattering area by the same equation

Wð0Þ
 
1þ g20

π
ln

Λ0ffiffiffiffiffiffiffiffiffiffi
jWð0Þ

q
j

!
¼ g20

A
: ð11Þ

In the above RGEs, the mean-field effect is represented
by the first two terms in Eqs. (5) and (9). One can verify
that at resonance these two terms lead to uMF

4 ðsÞ ¼
4g40s=½πð1þ g20s=πÞ2�, which yields a positive definite
VMF
4 ¼ ð4=πÞ lnðΛ0=ΛIRÞ > 0, a standard mean field result.
At resonance (W ¼ W0 ¼ 0) and zero chemical poten-

tial, the RG equations are identical to those derived for few-
body studies in Ref. [27]. Compared to Ref. [27], we have
further included two new ingredients in the RGEs to
facilitate our many-body studies: first, we allow a finite
detuning to address off resonance physics; second, we
introduce finite chemical potentials to address the proper-
ties of superfluids.
We first numerically solve the RGEs at the transition line

μB ¼ 0, where the IR scale is ΛIR ¼ 0 (i.e., sIR → ∞) [42].
u4ðsÞ in this limit can be shown to have a very simple
scaling form, su4ðsÞ ¼ fðg20s; g20sW; g20Þ where sW ¼
ð1=2Þ lnðΛ2

0=jWð0ÞjÞ and f is a universal function. We
compute su4ðsÞ for large s and identify the tricritical
points by computing the critical scattering area A� where
sIRu4ðsIRÞ ¼ 0 as sIR → ∞. The above scaling form
indicates that at tricritical points, fð∞; g20sW; g

2
0Þ ¼ 0,

which yields g20sW ¼ ðc=2Þ þ c1g20 þ � � �, when g0 is small
[43]. This leads to the scaling relation in Eq. (3).
To obtain the first-order transition line, we utilize the

relations between μB, u4ðsIRÞ, u6ðsIRÞ, and r, V4, V6, and
numerically obtain μcðAÞ from the transition condition
rðμcÞ ¼ V2

4ðμcÞ=ð4V6Þ at a given scattering area A. Here
the IR scale is set to be scIR ¼ ð1=2Þ lnðΛ2

0=jμcBjÞ. For the
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crossover line, we solve the same set of RGEs. From
the solutions to RGEs, we compute μ�ðAÞ that satisfies
the crossover condition V4ðμ�Þ ¼ 0, which requires
s�IRu4ðs�IRÞ ¼ 0 at the IR scale s�IR ¼ ð1=2Þ lnðΛ2

0=μ
�
BÞ.

Discussion.—Although the RGEs in this Letter work
best for g0 ≲ 1, it can still offer a valuable insight of
qualitative properties of superfluids with strong interactions
(g0 ≫ 1). If we extrapolate our results to large g0, the
window of first-order transitions becomes very significant,
even though we do not expect our theory to be quantita-
tively accurate in this limit.
Quantum fluctuations can, in principle, further stabilize

other competing states or orders. One such possibility is
to form polar states, i.e., px- or py-type of superfluids,
which break the U(1) and rotational symmetries, but unlike
pþ ip superfluids, do not break the time-reversal sym-
metry. We have applied the RGEs to further examine
interactions between pþ ip and p − ip fields. Close to
tricritical points, we find no evidence of px- or py-type of
ordering. In this Letter, we have exclusively focused on
superfluids and pairing states, which shall be most relevant
if one simply follows the lower branch starting from the
BCS side. At resonance (A → ∞), there can also exist other
more subtle few-body clusters as proposed in Ref. [27].
Applying the RGEs to tricritical points and transition lines
μcðAÞ, we have found no numerical evidence of few-body
cluster states near A�. However, whether or not tricritical
points discussed here can be related to a precursor of those
more subtle nonpairing states is still an open question;
interplays between superfluids and other exotic states and
detailed relaxation dynamics beyond pairing physics
remain to be investigated in the future.
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