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A key question in glass physics is what the origin of slow glassy dynamics is. The liquid structure is a
natural candidate; however, an apparently severe counterexample has been known. Two model glass-
forming liquids, with the standard Lennard–Jones interaction potential and its Weeks–Chandler–Andersen
variation without the attractive tail, exhibit very similar structures at the two-body level but drastically
different dynamical behaviors in the supercooled states. Here we look at the liquid structure through a
(many-body) structural order parameter Θ characterizing the packing capability of local particle
arrangements. We show that the structures of these two systems seen by Θ are actually very different
at a many-body level, but, quite surprisingly, the macroscopic structure (Θ)-dynamics (τα) relationships
commonly follow a Vogel–Fulcher–Tammann-like function. Furthermore, the mutual information analysis
reveals strong local structure-dynamics correlations. Therefore, we conclude that attractive interactions
affect the liquid structure in a nonperturbative manner, but a general structural origin of slow dynamics
holds for these systems.

DOI: 10.1103/PhysRevLett.124.225501

Introduction.—Crystals and gases are perfectly ordered
and disordered, respectively. In contrast, the liquid state of
matter is intermediate in nature with complex structures and
dynamics, remaining a central research topic in condensed
matter physics. Conventional wisdom from the theory of
simple liquids, dated back to van der Waals, is that the
short-ranged repulsive interactions play a dominant role in
determining the structure of liquid states and hence the
thermodynamics, with the long-ranged attraction acting as
a cohesive background [1]. This idea, which was further
developed by Weeks, Chandler, and Andersen, forms the
basis of the successful perturbation theories of liquid states
[1–3]. However, the generalization of this wisdom to viscus
supercooled liquids to explain the dynamics was severely
challenged in a series of works initiated by Berthier and
Tarjus [4–17]. It was shown that two model glass formers,
with the standard Lennard–Jones (LJ) interaction and the
Weeks–Chandler–Andersen (WCA) variation without
the attractive tail, exhibit almost identical structures at a
two-body level but drastically different dynamics at low
temperatures [4]. These results posed serious challenges to
theories, e.g., the mode-coupling theory, based solely on
pair density correlations [5,6], and therefore provided an
excellent benchmark for reconsiderations of the basic
understanding of glass-forming liquids [4–17].
Since the structure and dynamics appear to respond

differently to attractive interactions in the above example,
the crucial question is whether they can, in principle,
decouple with each other in realistic structural glass

formers. From a thermodynamic perspective, it was shown
that hidden scale invariance exists in the phase diagram of
the so-called Roskilde-simple liquids, i.e., “isomorph”
curves along which structure and dynamics in reduced
units are invariant to a good approximation [8–10,15,18].
The LJ and WCA liquids follow different isomorphs [8,9].
Therefore, their dynamic difference might be rationalized
from the underlying thermodynamic difference [8,15],
which in turn suggests subtle structural differences not
detected by two-body correlators [12,13]. Local structure
analyses using topological cluster classification [11] and
Voronoi face analysis [12] indeed evidenced such
differences. Therefore, the question turns to be whether
a unified physical framework exists to understand the
structure and dynamics and their relationship for both LJ
and WCA systems.
In this Letter, we aim to address the above question

quantitatively from two aspects based on a new structural
order parameter Θ [19,20]. (i) Macroscopically, we identify
a distinct structural difference between LJ and WCA
systems but establish a common relationship between Θ
and the structural relaxation time τα. (ii) Microscopically,
we reformulate the question as “how much information of
the dynamic heterogeneity can be predicted from the
structure.” We employ the mutual information (MI) to
quantify the degree of microscopic structure-dynamics
correlations [21–23]. We find that to achieve maximum
MI, i.e., the best prediction of dynamics, we need to take
into account structural order correlated over a length scale,
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ξ, which grows with decreasing temperature. For both LJ
and WCA systems, we obtain unprecedentedly high values
of MI at low temperatures, suggesting that the spatially
correlated structure order primarily controls dynamic hetero-
geneity. Our results thus establish a simple physical mecha-
nism for the nonperturbative role of attractive interactions in
glass-forming liquids from the structural perspective.
Methods.—We perform molecular dynamics simulations

of the simplest model glass former consisting of poly-
disperse particles in two dimensions (2D) for which the
structural order parameter Θ is well defined [19,24]. The
interaction potential between particles i and j is VðrijÞ ¼
4ϵ½ðσij=rijÞ12 − ðσij=rijÞ6� þ fðrijÞ, when rij=σij < Rc

and zero otherwise, where rij is the particle separation,
σij is the sum of the particle radii, and fðrijÞ guarantees the
continuity of both potential and force at rij ¼ Rcσij [25].
Here Rc¼21=6 and 2.5 correspond to WCA and LJ systems,
respectively. The particle size follows the Gaussian dis-
tribution with polydispersity Δð¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hσ2i − hσi2
p

=hσiÞ ¼
13%. All particles have the same mass m. Length, energy,
time, and temperature are in units of the averaged diameter
hσi, ϵ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mhσi2=ϵ
p

, and ϵ=kB, where kB is the Boltzmann
constant. We set the number density ρ ¼ 0.89 for both
systems, corresponding to typical moderate pressure con-
densed matter states. Our results do not sensitively depend
on these choices. Systems with N ¼ 4096 particles are
simulated in square boxes in the NVT ensemble with
periodic boundary conditions.
The structural order parameter Θ is constructed to

characterize the local packing capability in an order
agnostic manner [19]. Figure 1(a) illustrates a typical local
particle configuration. Each pair hiji of the nearby neigh-
bors, together with the central particle o, constitutes a basic
structural unit in 2D, i.e., a triangle [26]. The corresponding
reference configuration with these three particles in perfect
relative distances is shown in Fig. 1(b). For finite range
repulsive interactions, such perfect relative distances are set
by particle radius [19]. Here we generalize the definition

to LJ systems by using the repulsive core to define the
effective radius. The imperfectness of the original triangle
configuration is measured as the deviation of the central

angle θð1Þij from its reference θð2Þij . The structural order
parameter for particle o is then defined as Θo ¼
P

hiji jθð1Þij − θð2Þij j=No, where No is the number of pairs
of neighbors next to each other and the summation runs
over all the pairs. Larger Θ indicates greater deviation from
perfect arrangements, hence more disordered. Different
from Ref. [19], here the structural order is measured in
instantaneous liquid states rather than the inherent states,
which is crucial to establish the quantitative relationships in
this work.
To avoid the influence of long-wavelength Mermin–

Wagner fluctuations, the dynamics in 2D is characterized
using relative positions rjðtÞ ¼ rjðtÞ −

P

k rkðtÞ=nj, where
the summation runs over all nearest neighbors of particle j
[27–30]. Self-intermediate scattering function Fsðk; tÞ ¼
hPj exp ðik · ½rjðtÞ − rjð0Þ�Þ=Ni is measured with k ¼ jkj
set to the first peak of the static structure factor.
Accordingly, the structure relaxation time τα is defined
from Fsðk; ταÞ ¼ e−1.
To establish the microscopic correlation between struc-

ture and dynamics, we use the isoconfigurational ensemble
[31,32], within which the part of dynamic heterogeneity
related to the structure is reinforced, whereas fluctuations
with a purely dynamical origin are averaged out. Up to 200
independent trajectories starting from each initial configu-
ration are simulated. Accordingly, we define Fj

sðk; tÞ ¼
hexp ðik · ½rjðtÞ − rjð0Þ�Þiiso for each particle j, with
h·iiso indicating the isoconfigurational average. We deduce
microscopic τα from Fj

sðk; τjαÞ ¼ e−1, which is expected to
be a better measurement of the propensity of particle
relaxations compared to mean squared displacements
[19]. Structural order is characterized for the initial con-
figurations. Spatial coarse graining is used to describe the
structural order at a given length scale [19]. Mutual
information between two quantities x and y is defined as
MIðx;yÞ¼R R

pjðx;yÞlog2½pjðx;yÞ=pðxÞpðyÞ�dxdy, where
pjðx; yÞ is the joint probability distribution function of x
and y and pðxÞ is the probability distribution functions of x
[21]. MI is an information theoretic quantity based on
Shannon entropy [21], which provides a sensible meas-
urement of the structure-dynamics correlations [22,23].
Within this Letter, log10ðταÞ instead of its original value is
used in the calculation of MI, although the notion of “τα” is
used for simplicity.
Macroscopic structure and dynamics.—The temperature

dependence of τα shown in Fig. 2(a) indicates that, with
decreasing temperature, the dynamics of LJ systems
becomes much slower than WCA systems. Meanwhile,
the temperature dependence ofΘ shown in Fig. 2(b) reveals
a clear difference between the two systems. In particular,
the smaller values of Θ in LJ systems indicate better

(a) (b)

FIG. 1. Definition of the structural order parameter. (a) A typical
local configuration with a central particle, o, and its six neighbors.

Twoneighbors indicated as i and j have a central angle θð1Þij . (b) The
reference configurationwith the three indicated particles in perfect

relative distanceswith each other, with a central angle θð2Þij . See text
for the expression of order parameter Θ.
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structural ordering [11–13]. Therefore, the van der Waals
picture actually breaks down for both structure and
dynamics [3]. We observe a linear temperature dependence
of Θ for both systems in the supercooled regime (below the
onset temperature Ton): Θ − Θ0 ¼ κðT − T0Þ, where T0 is
the hypothetical ideal glass transition temperature from
the Vogel–Fulcher–Tammann (VFT) fitting of τα ¼
τ0 exp½DT0=ðT − T0Þ� with D being the fragility index,
Θ0 is the structural order at T0, and κ is a fitting parameter.
This indicates a general mechanism of structural ordering
regardless of the attractive tail.
In comparison, Fig. 2(c) shows the pair correlation

function gðrÞ calculated around Ton of the WCA system
[vertical dashed line in Fig. 2(b)], unveiling minor struc-
tural differences between the two systems at a two-body
level. We note that a close inspection indeed detects small
differences in gðrÞ [15,33,34], which derive from the
projection of many-body information to the two-body level
[1]. However, in principle, we can never recover many-
body correlations solely from the two-body information
[35], and a many-body approach is intrinsically necessary
to capture the important many-body correlations in a
controlled manner.
We further seek a direct quantitative relation between Θ

and τα. Figure 3 shows τα as a function of 1=ðΘ − Θ0Þ, and
a VFT-like scaling relation is identified in the supercooled
regime:

τα ¼ τ0 exp ½D2Θ0=ðΘ − Θ0Þ�; ð1Þ

where τ0 and D2 are fitting parameters. The scaling
collapse shown in the inset of Fig. 3 further confirms this
relationship. It tells us that the steep increase of τα is
controlled by the structure ordering when approaching the
hypothetical ideal glass transition point. Therefore, both
structure and dynamics are affected by the attractive
interactions in a nonperturbative manner; nevertheless,
the relationship between them, i.e., Eq. (1), remains
invariant. Further analyses in systems with hard-spherelike

interactions in 3D (using the structural order parameter Ω
defined in the same spirit as Θ [19]) are suggestive of its
generality. We hence speculate that in addition to the
“isomorph” of Roskilde-simple liquids [8,10,18], addi-
tional generality may exist in glass-forming liquids, which
is rooted in the subtle structure ordering at a many-body
level [36–38].
Microscopic structure and dynamics.—A caution from

the literature is that a macroscopic correlation between
structure and dynamics does not necessarily indicate a
microscopic correlation [39,40]. Therefore, we investigate
the microscopic structure and dynamics for further insights
in LJ and WCA systems. The self-intermediate scattering
functions Fsðk; tÞ of individual particles, together with the
global average, are shown in Fig. 4(a) for the LJ system.
Accordingly, the spatial distribution of microscopic τα is
visualized in Fig. 4(b), showing significant spatial hetero-
geneity [41,42]. The spatial distribution of Θ for the initial
state of the isoconfigurational ensemble is plotted in
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FIG. 2. Macroscopic structure and dynamics in LJ and WCA systems. (a) Temperature dependence of τα. High-temperature data,
above the onset temperature Ton indicated by arrows, are fitted by the Arrhenius law τα ∼ expðΔE=TÞ (solid lines). (b) Temperature
dependence of the structural order, Θ, which shows clear differences between the two systems. Error bars indicate standard derivations.
Solids lines are linear fittings to data below Ton: Θ − Θ0 ¼ κðT − T0Þ. See text for the meaning of parameters. Ton from panel (a) are
indicated by arrows. The vertical dashed line indicates T ¼ 0.26 chosen for calculating the pair correlation function gðrÞ,
as shown in (c).
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FIG. 3. Macroscopic relationship between structural order and
dynamics. Structure relaxation time τα is plotted as a function of
1=ðΘ − Θ0Þ. Solid lines are fittings to data below Ton (indicated
by arrows) according to the VFT-like relation Eq. (1). Inset:
Scaling collapse of τα=τ0 as a function of rescaled structural order
D2Θ0=ðΘ − Θ0Þ below Ton.
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Fig. 4(c), which, however, shows only a weak correlation to
microscopic τα. This is because, according to the nonlocal
scenario of structure-dynamics correlations [19], the co-
operative α relaxation is not controlled by the local
structure but rather the structural order over its static
correlation length. We therefore plot the spatial distribution
of Θ after coarse graining in Fig. 4(d), which indeed
exhibits a remarkable similarity compared to microscopic
τα in Fig. 4(b).
Such an enhancement of structure-dynamics correlations

by the spatial coarse graining procedure is further illus-
trated by the joint probability distribution function of
microscopic τα and local Θ, as well as its coarse graining,
ΘCG [see Fig. 4(e)]. It is initially very broad but shrinks
significantly into a narrow band after coarse graining,
indicating a strong structure-dynamics correlation via a
nonlocal mechanism [19]. Quantitatively, we explore “how
much information of the dynamic heterogeneity can be
predicted from the structure” by systematically calculating
MIðΘ; ταÞ as a function of the coarse graining length L for a
wide range of temperatures. As shown in Figs. 4(f) and
4(g), MIðΘ; ταÞ exhibits a peak at certain L, which grows
with decreasing temperature. The maximum value of
MIðΘ; ταÞ also grows and reaches unprecedentedly high
values at low temperatures [22,23]. The same features are
observed for both LJ and WCA systems, suggesting a
general mechanism of structure-dynamics correlations,
consistent with the macroscopic results (see Fig. 3).

We stress that the coarse graining is a purely static
operation, and therefore, the intriguing behavior of
MIðΘ; ταÞ contains two important implications. (i) The
structural order develops upon cooling while accompany-
ing the growth of its correlation length. (ii) The spatially
correlated structural order directly controls the cooperative
α relaxation in a nonlocal manner.
Discussions.—The thermodynamics of a glass-forming

liquid is, in principle, determined by free energy, with both
energy and entropy contributions. For hard-spherelike
systems, entropy dominates, which is controlled by the
structure [19,20]. However, our results suggest that LJ
systems in typical condensed phase states are also “hard
spherelike,” with the same behaviors of structure ordering
and structure-dynamics relationships as WCA systems.
This appears counterintuitive, considering that the attrac-
tive tail of LJ potential affects both structure and dynamics
in a nonperturbative manner. To resolve the mystery, we
check how the potential energy correlates with microscopic
dynamics (kinetic energy is expected to be spatially uni-
form and therefore neglected). The local potential energy of
particle i is calculated as Ei ¼

P

j VðrijÞ, with the sum-
mation going over all interacting neighbors. Figure 5 shows
MIðE; ταÞ as a function of the coarse graining length L for
LJ and WCA systems. Overall, MIðE; ταÞ is in the order of
0.01 and does not show obvious dependence on T and L,
indicating marginal information of microscopic dynamics
from the local potential energy even after coarse graining.

FIG. 4. Microscopic correlation between structural order and dynamics. (a) Self-intermediate scattering function Fsðk; tÞ of each
particle (background) and the whole system (black circles) for LJ system at T ¼ 0.305. (b)–(d) Spatial distribution of microscopic τα,
bare structural order, Θ, and its coarse graining with L ¼ 5.5, ΘCG, respectively. Note that red color indicates faster dynamics or less
ordered structures. (e) Joint probability distribution of microscopic relaxation time log10ðταÞ and bare structural order Θ (top), as well as
that coarse grained with L ¼ 5.5, ΘCG (bottom). (f),(g) MI between microscopic τα and Θ as a function of coarse graining length L for
LJ and WCA systems, respectively. L ¼ 0.5means without coarse graining. Temperature decreases from red to blue, corresponding to a
range of macroscopic τα ∼ 3 to 10 000.
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Therefore, we may conclude that potential energy affects
dynamics indirectly only through its influence on the
structural ordering at a many-body level. This result thus
unveils a compelling mechanism for the interplay between
energy and entropy.
Concluding remarks and prospects.—In this Letter, we

propose a novel structural approach for the nonperturbative
role of attractive interactions through careful studies of two
simple glass formers interacting with LJ and WCA poten-
tials. We show that both structure and dynamics are affected
by the attractive interactions in a nonperturbative manner,
but the general relation between them remains valid
and invariant both macroscopically and microscopically.
Our study is not exhaustive, e.g., we have not considered
different models with different ranges of attractions or with
nonadditive interactions, and therefore, the generality of
our findings should be checked through more extensive
investigations. Nevertheless, our results exemplify the
fundamental role of structure ordering in supercooled
liquids when approaching the glass transition. If the general
relevance of this physical picture is confirmed, because of
its simplicity, it may provide a basic framework for future
theoretical developments of the long-standing glass tran-
sition problem.
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