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We study the electromechanical transduction in nanoelectromechanical actuators and show that the
differences in scaling laws for electrical and mechanical effects lead to an overall nontrivial miniaturization
behavior. In particular, the previously neglected fringing fields considerably increase electrical forces and
improve the stability of nanoscale actuators. This shows that electrostatics does not pose any limitations to
the miniaturization of electromechanical systems; in fact, in several respects, nanosystems outperform their
microscale counterparts. As a specific example, we consider in-plane actuation of ultrathin slabs and show
that devices consisting of a few layers of graphene are feasible, implying that electromechanical resonators
operating beyond 40 GHz are possible with currently available technology.
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Microelectromechanical systems (MEMS) are prevalent
in modern microtechnologies in the form of microphones,
gyroscopes, accelerometers, magnetometers, and thermom-
eters, as well as pressure and chemical sensors [1,2].
A central MEMS functionality is the transduction between
electromagnetic and mechanical degrees of freedom [3–7].
Electrostatic transducers have found applications ranging
from experimental investigations of fundamental physics
[8] over microrobotics and nanorobotics [9] to nanopho-
tonics [10,11], and they were proposed as building blocks
for adiabatic computing [12,13]. Moreover, electric trans-
duction forms the basis of the optoelectromechanics
research on, e.g., optical detection of radio waves [14],
graphene-based superconductive devices [15], or manipu-
lation of quantum states [16].
A current research frontier is concerned with scaling

MEMS to smaller dimensions, i.e., developing nanoelec-
tromechanical systems (NEMS) [17] whose physics is
often described via scaling-law arguments based on the
parallel-plate capacitor model [1,2,18–21]. This downscal-
ing is desirable not only to reduce the footprint and the
consumption of materials and energy but also to enable new
functionalities. For example, electrochemistry and fluidics
set the length scale of electromechanical integration with
biological systems [22], and NEMS combined with nano-
photonics opens a wealth of opportunities because of the
subwavelength nature of the mechanical components [11].
However, NEMS is not merely scaled down MEMS
because atomic and quantum effects such as the Casimir
effect [23,24], field emission [25], and size dependence of
the Young’s modulus [26] become significant at the nano-
scale. In addition, constraints imposed by applications as
well as limitations to nanofabrication technology imply
that aspect ratios [27–29] and more generally the design
features in NEMS are different from their MEMS

counterparts. For example, in NEMS photonics, these
constraints in practice favor an aspect ratio close to unity
[11,30–35], which diminishes the transduction calculated
in the parallel-plate model [36,37]. This calls for an

FIG. 1. 3D geometries and 2D electric fields of NEMS
electrostatic actuators. Electrostatic actuators consisting of
(a) rigid and (b) elastic beams exhibit (c) electric field lines,
which combine the characteristics of the fields of a (d) parallel
plate and (e) coplanar strips. (f) The displacement of elastic
beams calculated with the full electric field (solid) is significantly
larger than in the parallel-plate approximation (dashed).
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investigation of electromechanical actuation for arbitrary
aspect ratios in MEMS and NEMS, which was missing.
Here we consider the impact of scaling laws on the
transduction in NEMS actuators for general aspect ratios
[Figs. 1(a)–1(e)]. We find that the fringing fields signifi-
cantly change the scaling laws, instabilities, and actua-
tion range.
We first consider an electrostatic actuator of two rec-

tangular beams [Figs. 1(a) and 1(b)]. The cross-section
electric-field lines for an aspect ratio h ¼ w, where h is the
height and w is the width of the beams, are shown in Fig. 1
(c). The field consists of a combination of the character-
istics of the two limiting cases of h ≫ w, which is a
parallel-plate capacitor with a homogeneous field
[Fig. 1(d)], and h ≪ w, which are coplanar strips with a
highly inhomogeneous fringing field [Fig. 1(e)].
The displacement, Dc at the center of two elastic beams

[Fig. 1(b)] is calculated from the Euler–Bernoulli equations
with fixed endpoints and subject to an electrostatic pressure
[6,38]. The latter is calculated from the capacitance per unit
length, C2D, which we derive from the capacitance of a
rectangle near a ground plane as [39–41],

C2D ¼ ϵ0
2

�
2h
g
þ c

�
2w
g

�
a
þ d

�
h
w

�
b
þ f

�
; ð1Þ

where ϵ0 is the vacuum permittivity, g is the cross-sectional
distance, a ¼ b ¼ 0.23 are scaling coefficients, c ¼ 3.31,
d ¼ 0.73, f ¼ −1.06. Equation (1) is formally valid for
h=g ≥ 0.05 and 0.05 ≤ w=g ≤ 5, but we find that it agrees
with detailed numerical models beyond these ranges [41].
The first term in Eq. (1) corresponds to a parallel-plate
capacitor, the second describes the fringing fields, and the
rest do not contribute to the force in this geometry. To
illustrate the impact of the fringing fields, we consider
silicon beams with width w ¼ 230 nm, height h¼220nm,
length L ¼ 15 μm, and Young’s modulus E ¼ 169 GPa,
which are experimentally realistic parameters for photonic
NEMS [30,35,42]. We calculate Dc for different initial
gaps, g0, with and without the fringing fields [Fig. 1(f)].
Notably, displacements are significantly higher than pre-
dicted by the inaccurate yet commonly employed parallel-
plate approximation, e.g., it is approximately two times
higher for g0 ¼ 100 nm and a voltage of V ¼ 4.65 V.
The maximum displacement for electrostatic actuators is

only a fraction of the initial gap due the pull-in instability
[5,43–45]. If the applied voltage is increased beyond a
critical value, Vp, the mechanical restoring force cannot
counterbalance the electrostatic force and the two bodies
collapse onto each other. Generally, any force that scales as
an inverse power law,

F ∝
1

ðg0 − yÞν ; ð2Þ

and is balanced by a linear restoring force has a maximum
actuation range of g0=ðνþ 1Þ [31,41]. For example, a
parallel-plate actuator has ν ¼ 2 and is limited to displace-
ments of 1=3 the initial gap. An important finding of our
work, which is already apparent from Fig. 1(f), is that the
fringing fields increase the actuation range beyond the
parallel plate instability point g0=3. This advantage of low
aspect ratio NEMS originates from the scaling laws of the
electrostatic force.
In order to study the general behavior of electrostatic

actuation, we use a lumped spring-mass model composed
of two rigid parallel beams, where one beam is fixed and
the other one is attached to a spring [Fig. 1(a)]. The
electromechanical force on the movable beam is [41]

F ¼ ϵ0L
2

�
h

ðg0 − yÞ2 þ
2a−1waca
ðg0 − yÞaþ1

�
V2 − ky; ð3Þ

from which we calculate the pull-in displacement for three
different width to initial gap ratios [Fig. 2(a)]. We observe
that the pull-in distances lie between those of the limiting
cases of h ≫ w ðyp ¼ g0=3Þ and h ≪ w ðyp ¼ g0=2.23Þ in
accordance with Eq. (2). In addition, the pull-in voltage is

FIG. 2. Displacement and instability in parallel-beams trans-
duction. (a) Normalised pull-in displacement of a rigid parallel-
beam actuator [Fig. 1(a)] for different ratios of height to initial
gap. The parallel-plate approximation is valid for electrostatic
actuators with high aspect ratios and the normalized pull-in
distance yp=g0 approaches 1=3 for large beam heights. Inset:
Pull-in voltage for different height to gap and width to gap ratios.
The spring constant is k ¼ 0.5 Nm−1 for all widths and heights.
The beam width has a significant contribution to the pull-in
voltage. (b) Stable (solid) and unstable (dashed) equilibrium
curves for different ratios of height to initial gap, h=g0, and
w ¼ g0.
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much larger for flat actuators (h ≪ g0) as shown in the inset
of Fig. 2(a). We note that the pull-in voltage depends on the
spring constant k, which in actual devices may depend on h
and w but is kept constant in Fig. 2(a) to enable a direct
comparison. In contrast, the pull-in displacement and nor-
malized voltage [Fig. 2(b)] are independent of the spring
constant [41]. Notwithstanding the importance of the
increased pull-in displacement for flat actuators, the most
striking conclusion from Fig. 2 is that the quantity of most
immediate experimental importance, namely the voltage-
displacement relation [Fig. 2(b)], is only weakly dependent
on the aspect ratio. This indicates that very thin electrostatic
actuators are feasible thanks to the fringing fields taking over
the actuation from the homogeneous fields.
Motivated by the apparent feasibility of actuators with

ultrasmall aspect ratios, we investigate this further using the
lumped spring-mass model for the limiting case of two
coplanar strips. This model can describe ultrathin mem-
branes [46] and 2D materials [47] for which in-plane
electrical transduction has never been investigated. The
capacitance per unit length of two coplanar strips is
given by Cs ¼ ϵ0Kð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

p
Þ=KðqÞ [48–50], where q ¼

g=ð2wþ gÞ and K is the complete elliptic integral of the
first kind. The normalized pull-in displacement as a
function of width to initial gap ratio is calculated numeri-
cally [41] in Fig. 3. The actuation range is always greater
than 40% of the initial gap, and we prove that it asymp-
totically reaches 1=2 [41], showing that actuation of 2D
beams outperforms those of finite height. The actuation
range behaves nonmonotonically for very small width to
gap ratios. This is explained by the nontrivial dependence
of the capacitance on the width, which in this case, but also
in other 2D geometries, is asymptotically logarithmic [41].
Finally, the voltage-displacement dependence (inset in
Fig. 3) shows a qualitative behavior of the coplanar strip
actuator that is similar to that of the parallel-plate actuator.

As a concrete example of in-plane actuation mechanisms,
we consider two parallel coplanar strips of a suspended
graphene monolayer with w ¼ 450 nm, L ¼ 7 μm, and
g0 ¼ 100 nm. The mechanical properties of graphene [51]
are characterized by the Young’s modulus E ¼ 1TPa, the
density ρ¼2200 kgm−3, and the sheet height h ¼ 0.35 nm.
For a doubly clamped beam, the lumped parameter k is
given by k ¼ 32Ehðw=LÞ3, which leads to a spring constant
of k ¼ 2.98 Nm−1. The maximum actuation is found
from Fig. 3 to be xp ¼ 49 nm and the pull-in voltage is
calculated to be Vp ¼ 20 V [41]. The fundamental fre-
quency of a beam with a negligible built-in tension is
f0 ¼ 1.03w

ffiffiffiffiffiffiffiffi
E=ρ

p
=L2, which predicts an actuation fre-

quency of 200 MHz. These numbers suggest that in-plane
actuation can be used for monolithic graphene NEMS that
can take full advantage of the material properties and
represent the ultimate limit of 2D devices [52], although
previous research has focused on out-of-plane actuation. For
given beam dimensions, the in-plane to out-of-plane reso-
nance frequency scales as fin=fout ¼ w=h, indicating orders
of magnitude difference in oscillations of 2D materials. The
highest frequency demonstrated via out-of-plane actuation is
fout ¼ 1.17 GHz [53] for a beam of w ¼ 3 μm and
L ¼ 1.2 μm, which was achieved by taking advantage of
high built-in tension. However, the out-of-plane frequency of
this resonator with zero built-in-tension is calculated to be
fout ¼ 5.3 MHz. If the same beam is actuated in plane, the
frequency is fin ¼ 45.7 GHz, which shows that in-plane-
actuated nanomechanical devices may operate at speeds
consistent with modern optical communication systems.
Most importantly, our analysis shows that in-plane actuation
of 2D materials is indeed possible and enables reconfig-
urable 2D quantum-dot networks [54] and ultrathin tunable
metamaterials [55,56].
We finally turn to comb-drive actuators [Fig. 4(a)],

which are employed because of their linear capacitance-
displacement relationship, enabling large displacements
without a pull-in instability in the actuation direction
[57,58]. Traditionally, comb-drive actuators have been
treated in the parallel-plate approximation, even in devices
with near-unity aspect ratios [13,28,33,34,59]. The electric
fields of a periodic cell in the finger array [Fig. 4(b)] can be
classified in three categories with distinct impact on the
actuation force: fields created by the finger tips, Ef, fields
between overlapping fingers, Ep and Es, and all remaining
fields, Eg. The fields Ep and Es correspond to the parallel
plate and coplanar strip fields of the parallel beams. Their
capacitance increases linearly with finger overlap,
C ¼ Ccs, where Cc is the 2D capacitance of the cross
section and s is the overlap, i.e., it gives rise to a constant
force. The field Ef encounters only a translational shift in
the displacement direction without experiencing any redis-
tribution in its profile and thus ∂Cf=∂s ¼ 0, meaning that it
does not contribute to the force. The field lines of Eg give

FIG. 3. Normalised pull-in displacement of a coplanar strip
actuator for different ratios of width to initial gap. The system
corresponds to a parallel-beam actuator of zero height with a
cross section shown in Fig. 1(f). Inset: stable (solid) and unstable
(dashed) equilibrium curves for different strip width to initial gap
ratios. The actuation range is greater than that of a parallel-plate
actuator due to the scaling of the fringing forces.
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rise to global forces with no counterpart in parallel plates,
beams, and coplanar strips. They connect nonoverlapping
regions and terminate on top and/or bottom surfaces, i.e.,
they can only be understood in a 3D model. These fields are
diminished by actuation due to the reduction of the non-
overlapping region, leading to a negative contribution to the
force, ∂Cg=∂s ≤ 0, which tends to disengage the fingers.
Previous work [60] approximated the global force as
Fg ¼ −4ϵ0V2ðwþ gÞ=ð4πsÞ, which does not depend on
the height and confirms their out-of-plane character.
However, it also predicts a nonlinear dependence on the
overlap, but, as we show below, this nonlinearity vanishes
for low aspect ratios.
While the separation of field components is instructive

for understanding the underlying physics of comb-drive
actuators, it is not entirely rigorous, and we therefore use a
finite element method to calculate the capacitance of a unit
cell as a function of finger overlap for fingers with width
w ¼ 250 nm, gap g ¼ 350 nm, length L ¼ 2 μm, and
two different heights of h ¼ 260 nm and h ¼ 5 nm.

We calculate the 2D cross-section capacitance Cc and
the full 3D capacitance C. The latter is compared to the
approximation C ¼ Ccs [Fig. 4(c)]. We find that the full 3D
capacitance is a linear function of the finger overlap,
contrary to the global-force formula in Ref. [60]. The
contributions from the fingertip and the global fields make
the 3D capacitance always higher, but its slope always
lower, than the 2D approximation. To quantify the global
forces, we extract the 3D differential capacitance from a
linear fit and compare it to the 2D simulation and the
parallel-plate approximation (see Table I). We assume that
the difference in the 2D and the 3D calculations is caused
by contribution of the global forces, which is quantified to
be ΔCg=Δy ¼ −0.6 × 10−11 Fm−1 for both h ¼ 260 nm
and h ¼ 5 nm. This suggests that the global forces take
place between the outer surfaces of the fingers and do not
depend on their height, in accordance with Ref. [60]. These
contributions reduce the total electrostatic force by 20% for
h ¼ 260 nm and 38% for h ¼ 5 nm. Finally, we note that
the parallel-plate approximation significantly underesti-
mates the electrostatic force of actuators with an aspect
ratio near unity and completely fails for ultrasmall aspect
ratios, concealing the fact that comb-drive actuators can be
used monolithically in ultrathin devices.
From the preceding discussions, it is clear that the forces

from the finger width increase in importance with the
reduction of height, impacting the miniaturization of the
lateral dimensions of the comb-drive actuator. The width of
a comb with N finger pairs is 2Nðwþ gÞ, and we are
interested in choosing these parameters such that the
actuation force is maximum for a given comb width.
Neglecting 3D effects, the figure of merit that must be
maximized is Cc=ðgþ wÞ. In the limit of ultrathin actua-
tors, we approximate the cross-sectional capacitance as that
of coplanar strips Cc ¼ Cs. In this case, the force depends
strongly on the width to gap ratio and is maximum for
w ≈ 0.4g [41] and g as small as possible. For finite height,
the fingers are approximated as parallel beams with Cc ¼
C2D given by Eq. (1), which is maximized when both g and
w are as small as possible. This is, however, not feasible
because of an instability that collapses individual fingers
with too small width, which was studied in the parallel-
plate approximation in Ref. [58]. We linearize the con-
tribution of the capacitance Eq. (1) in the Euler–Bernoulli

FIG. 4. Electric fields and capacitances of comb-drive actua-
tors. (a) Illustration of a comb-drive actuator. (b) Selected field
lines for a unit cell. (c) Capacitance of a unit cell as a function of
finger overlap for a near unity aspect ratio (h ¼ 260 nm) as well
as for nearly flat slabs (h ¼ 5 nm). The full 3D capacitance is
higher than its 2D approximation as it includes the extra
capacitance of the tip fields Ef and the global fields Eg, but it
has a lower slope because this extra capacitance has a negative
contribution to the force. This capacitance does not change the
linear behavior of the actuator that persists in the ultrathin
membrane regime.

TABLE I. Differential capacitance calculated by linear fitting of
the capacitance simulations shown in Fig. 4(c).

ΔC=Δy ð10−11 Fm−1Þ
Approximation h ¼ 260 nm h ¼ 5 nm

Parallel plate 1.3 0.025
Simulation 2D ðCcÞ 3.0 1.6
Simulation 3D 2.4 1.0

PHYSICAL REVIEW LETTERS 124, 223902 (2020)

223902-4



equation and introduce the fringing field corrections to the
model of Ref. [58] to obtain [41]

Ṽ2 ¼ V2
ϵ0L4

Ew3

�
24

g3
−
6.578w0.23

hg2.23

�
: ð4Þ

Equation (4), along with the requirement that Ṽ ≤ 3.516,
restricts the comb-drive parameters so that there is no
instability. For example, for silicon with V ¼ 30 V,
g ¼ 350 nm, h ¼ 260 nm, and L ¼ 2 μm, the minimum
finger width is w ≥ 35 nm. If the fringing field contribution
is ignored and a parallel-plate model is used instead, the
minimum width is w ≥ 32 nm, showing that the fringing
field only has a small effect on the instability as expected
from its scaling.
Our findings show that, contrary to prevalent assump-

tions, NEMS transducers with ultralow aspect ratios are not
only electromechanically possible, they are in fact in many
ways superior to their counterparts with high aspect ratios.
In such flat actuators, the fringing fields take over from the
parallel fields, resulting in qualitatively similar transduction
but with improved pull-in instabilities. This surprisingly
advantageous scaling to flat structures shows that a new
realm of nanoelectromechanical experiments and devices is
within experimental reach. For example, flat devices enable
electromechanical actuation at tens of gigahertz of 2D
materials [52,61], Floquet topological photonics [62],
tunable optomechanical crystal resonators [37] or quantum
optomechanics based on superconducting resonators [63].
Mechanical oscillators with frequencies in the gigahertz
range are of special technological importance, enabling
microwave to optical photon converters [64], quantum
memories [65], and laser cooling mechanisms [66,67].
Finally, the fact that actuators with ultralow aspect ratios
maintain a large capacitance has important implications for
the scaling of nanoscale sensors, not only because the
capacitance is larger than previously believed but more
importantly because in-plane transduction offers ample
opportunities for reducing and engineering the stray
capacitance, which is the limiting factor in state-of-the-
art NEMS capacitive sensors [36].
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