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We discuss the interaction of a mobile quantum impurity with a Bose-Einstein condensate of atoms at
finite temperature. To describe the resulting Bose polaron formation we develop a dynamical variational
approach applicable to an initial thermal gas of Bogoliubov phonons. We study the polaron formation after
switching on the interaction, e.g., by a radio-frequency (rf) pulse from a noninteracting to an interacting
state. To treat also the strongly interacting regime, interaction terms beyond the Fröhlich model are taken
into account. We calculate the real-time impurity Green’s function and discuss its temperature dependence.
Furthermore we determine the rf absorption spectrum and find good agreement with recent experimental
observations. We predict temperature-induced shifts and a substantial broadening of spectral lines. The
analysis of the real-time Green’s function reveals a crossover to a linear temperature dependence of the
thermal decay rate of Bose polarons as unitary interactions are approached.
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Introduction.—The interaction of a mobile impurity with
a surrounding quantum bath is one of the paradigmatic
models of many-body physics. The polaron introduced by
Landau, Pekar, and Fröhlich [1,2] to describe the motion of
an electron in a lattice of ions, is formed by the dressing
with lattice phonons and is a prime example of quasipar-
ticle formation in condensed matter. More recently, neutral
atoms immersed in quantum degenerate gases of bosonic or
fermionic atoms have attracted much attention since they
are experimentally accessible platforms allowing to study
polaron physics with high precision and in novel regimes.
Employing Feshbach resonances [3] it is possible to tune
the impurity-bath interaction from weak to strong coupling
and Rydberg states can be used to study impurities with
nonlocal interactions [4–6].
The problem of a Fermi polaron, i.e., an impurity

interacting with a degenerate Fermi gas has been studied
in a number of experiments in recent years [7–14]. This and
related theoretical work [15–35] have led to a rather good
understanding of this problem. In contrast, the description
of impurities in a Bose-Einstein condensate (BEC), leading
to the so-called Bose polaron is more involved [36]. The
challenge for theory is here directly related to the relatively
large compressibility of the system, which allows for a
much larger number of excitations that can be generated by
the impurity. Also the experimental observation presented a
major challenge due to three-body losses, and has only
recently been achieved in experiments at JILA [37], Aarhus
[38], and MIT [39]. Tuning through a Feshbach resonance
all regimes from weak to strong coupling were studied.
While being in good general agreement with theoretical

predictions, the Aarhus data showed deviations for strong
repulsive interactions, see Fig. 1, which were attributed
to a nonzero temperature. Following up on that, a recent
extended T-matrix analysis predicted rather dramatic

FIG. 1. Densityaveragedpolaronabsorptionspectra ĀðωÞ froma
noninteracting state of the impurity into an interacting state as a
function of dimensionless impurity-boson scattering length knaIB.
kn ¼ ð6π2nÞ1=3 with n being the trapped-averaged density of the
Bose gas (see Ref. [38]), andEn ¼ k2n=ð2mredÞ. Red dots show the
mean peak values and HWHM width (inset) of the absorption
spectrum predicted by the thermal coherent state variational ansatz
(color code) at T ¼ 160 nK compared with experimental results
(blue and green symbols) fromRefs. [38] and [42]. Full lines show
the T ¼ 0 theoretical predictions in Ref. [38].
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temperature effects [40], most notably the appearance of
new temperature-induced quasiparticle peaks [41], which
would have profound consequences for the quasiparticle
interpretation of the Bose polaron and its properties. These
recent developments highlight the need of new theoretical
approaches that take into account temperature as well as the
creation of a large number of excitations in polaron
formation. Indeed, while there exists by now a broad set
of theoretical techniques to study Bose polarons at T ¼ 0,
extensions to T > 0 are not straightforward, so that, apart
from first diagrammatic and functional determinant
approaches [5,40,41], theoretical progress remains highly
limited so far.
We here discuss the Bose polaron at nonzero temperature

developing a dynamic variational approach for an initial
state of Bogoliubov phonons at finite T, which for T ¼ 0
simplifies to that of Ref. [43]. The method is a non-
equilibrium one and thus gives direct access to the
dynamics of polaron formation after an excitation from a
noninteracting state by a rf pulse. One of the key results is
depicted in Fig. 1, where we show the calculated, trap
averaged absorption spectrum ĀðωÞ (color coding) for the
Aarhus experiment. For 1=knaIB > 0 a notable difference
between the peak positions of T ¼ 0 calculations (full line)
from the experimental values (blue circles: raw data [38]
and green circles: corrected data [42]) was observed. In
contrast, the results from our approach (red points) show
good agreement. While the raw data exhibit a small
deviation from our values on the attractive side [we define
the mean peak response as ω̄ ¼ R

dωωĀðωÞ], the onset of
the polaron branch (purple circles, [42]) matches well the
onset of the theoretical absorption spectra. Strictly speak-
ing, a sharp lower bound for the polaron energies (quantum
Monte Carlo result in Ref. [42]) makes only sense at T ¼ 0:
for finite T the spectrum continues and goes smoothly to 0
shortly below this value. Moreover, the calculated width of
the absorption peaks (inset) agrees well with the experi-
ment. Finally, while our approach predicts temperature-
induced shifts, thermal quasiparticle broadening, and a
temperature-dependent quasiparticle weight, in contrast to
Ref. [41] we do not find evidence for a significant transfer
of spectral weight to new quasiparticle peaks, i.e., we do
not see a transition from a single peak to two well-separated
peaks as T becomes nonzero.
Model.—We here consider the interaction of a single

impurity of mass M with a homogeneous Bose gas in d
dimensions in a box of size Ld with periodic boundary
conditions. Position and momentum operators of the
impurity are r̂ and p̂. We treat the BEC of condensate
density n0 in Bogoliubov approximation, i.e., in terms
of noninteracting plane-wave excitations (phonons) of
momentum k, described by annihilation and creation

operators âð†Þk . The condensate is characterized by the
healing length ξ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gBBn0m

p
, where m is the mass

of the BEC atoms and gBB ¼ 2πaBB=m describes their

mutual interaction with aBB the s-wave scattering length
(ℏ ¼ 1). The Bogoliubov dispersion relation reads ωk ¼
ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2ξ2=2

p
with c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gBBn0=m
p

denoting the speed
of sound and k ¼ jkj. In order to formally decouple the
impurity we transform to a co-moving frame [44] using
Û ¼ expf−ir̂ · P̂phg, where P̂ph ¼

P
k kâ

†
kâk is the total

phonon momentum. Using Û†p̂ Û ¼ p̂ −
P

k kâ
†
kâk and

Û†âkÛ ¼ âke−ik·r̂, the Hamiltonian reads [36]

HLLPðp̂Þ¼ 1
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†
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where V�
k;k0 ¼ ðWkWk0 �W−1

k W−1
k0 Þ. p̂ now represents the

total momentum of the system which is a constant of
motion [45]. In the polaron frame the phonon dynamics
attains a nonlinear term ∼P̂2

ph, which describes impurity-
mediated phonon-phonon interactions that vanish in the
limit M → ∞. The impurity-BEC interaction strength
gIB ¼ 2πaIB=mred is expressed in terms of the s-wave
scattering length aIB and reduced mass mred ¼ mM=
ðmþMÞ, and Wk ¼ ½k2ξ2=ð2þ k2ξ2Þ�1=4. Crucially note
that, due to thermal depletion, the condensate fraction
n0 ¼ n0ðTÞ is temperature dependent. For weak Bose-Bose
interactions we have n0ðTÞ=n ¼ 1 − ðT=TcÞ3=2 at fixed
total particle density n.
Polaron properties are encoded in the impurity Green’s

function SðtÞ ¼ TrfeiH0te−iHtρg, where the density matrix
ρ determines the initial state of the system, and H0 and H
are the Hamiltonian in absence and presence of the
impurity bath interaction. SðtÞ, also called “dynamical
overlap,” describes the dephasing dynamics of the system
following a sudden quench of gIB at time t ¼ 0. It can be
measured using Ramsey spectroscopy as previously
demonstrated in fermionic environments [12,13,33,34].
Fourier transformation of SðtÞ in turn yields the (injection)
absorption spectrum AðωÞ ¼ 2Re

R
∞
0 dτeiωτSðτÞ in linear

response, when the impurity is driven from a noninteracting
state to a state with finite gIB [13,26,28,34].
In contrast to previous studies of this problem

[36,38,42,43,46–59], we here consider finite temperature.
This is accounted for by an initial density matrix
ρ ¼ ρphT ⊗ jpihpj, where the phonon bath is in thermal

equilibrium, ρphT ¼ e−β
P

k
ωkâ

†
kâk=Z (Z ¼ Tr½e−βH0 �), for an

impurity initially in a momentum eigenstate jpi. In order
to unambiguously identify the role of bath temperature
and to allow direct comparison with previous studies [41],
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we focus in the following on p ¼ 0. An important sim-
plification of the T ¼ 0 limit is that the initial state is
invariant under the Lee-Low-Pines transformation, which
is no longer the case at finite T. Here the total momentum
P̂ph appearing in HLLP has rms fluctuations that are
extensive in the system size. We will show in the following
that a proper generalization of the dynamical variational
approach of Ref. [43] solves this problem. To this end we
first introduce a projector Π̂Q on eigenstates of P̂ph with

eigenvalueQ. Then one findsU†ρU ¼ R
d3QΠ̂Qρ

ph
T ⊗ jpþ

Qihpþ Qj. We represent the thermal state of phonons
as a Gaussian average over coherent states jξki [60]:
ρphT ¼ Q

k

R
d2ξk½e−jξkj2=n̄k=πn̄k�jξkihξkj. Here n̄k ¼ 1=

ðeβωk − 1Þ is the average phonon number in mode k.
Thus we find

SðtÞ ¼
Z

d3Qhψ0ðtÞjΠ̂QjψðtÞi: ð2Þ

Here jψðtÞi ¼ e−iH
LLPðQÞtjξki and jψ0ðtÞi ¼ e−iH

LLP
0

ðQÞtjξki
describe the time evolution of the initial states jξki under
HLLPðQÞ and HLLP

0 ðQÞ (Eq. (1) for gIB ¼ 0), respectively,
where the impurity-momentum operator p̂ is replaced by
the c number Q. The overbar denotes the average over
the ξk’s and we have used that HLLP

0 commutes with the
projector Π̂Q.
Dynamical variational ansatz.—We calculate SðtÞ using

wave functions jψðtÞi and jψ0ðtÞi in a variational sub-
manifold of Hilbert space constructed by time-dependent

multimode coherent states jβðtÞi ¼ Q
k e

βkâ
†
k−H:c:j0i ¼Q

k jβkðtÞi including a time-dependent phase
jψðtÞi ¼ e−iϕðtÞjβðtÞi. With jψ0ðtÞi ¼ e−iϕ0ðtÞjβ0ðtÞi,
and defining Δϕ≡ ϕ − ϕ0 one finds SðtÞ ¼R
d3Qe−iΔϕðtÞhβ0ðtÞjΠ̂QjβðtÞi. The minimization of the

Lagrangian L ¼ hψðtÞji∂t −HLLPjψðtÞi, and similarly
L0, gives the Euler-Lagrange equations
d=dtð∂L=∂ _βkÞ − ∂L=∂βk ¼ 0,

i
d
dt

βkðtÞ ¼
�
ωk þ

k2

2M
−

k
M

· ðQ − PphÞ
�
βkðtÞ

þ gIB
ffiffiffiffiffi
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p
Ld=2 Wk þ

gIB
Ld

X
q

ðWkWqRe½βqðtÞ�

þ iW−1
k W−1

q Im½βqðtÞ�Þ; ð3Þ

and similarly for β0kðtÞ (where gIB ¼ 0), with (random)
initial values βkð0Þ ¼ β0kð0Þ ¼ ξk. The total phonon
momentum in state jψðtÞi is given by Pph ¼P

k kjβkðtÞj2. The time-dependent Schrödinger equation
implies L ¼ L0 ¼ const, and thus,

i
dΔϕ
dt

¼ gIB

�
n0 þ

ffiffiffiffiffiffi
n0
Ld

r X
k

Wkβ
0
kðtÞ

�
−
ðPph − P0

phÞ2
2M

;

ð4Þ

with β0k ¼ Re½βk�. Note that different from T ¼ 0, also the
phonon momentum P0

ph without interactions enters.
Infinitely heavy impurity.—We first discuss the limit of

an infinitely heavy impurity,M → ∞. In this caseHLLP
0 ðQÞ

and HLLPðQÞ become independent of Q and Eq. (2)
becomes

SðtÞ ¼ e−iΔϕðtÞhβ0ðtÞjβðtÞi: ð5Þ

Moreover, the equations of motion (EOM) for βkðtÞ, β0kðtÞ,
and ΔϕðtÞ become linear. This allows one to express the
overlap hβ0ðtÞjβðtÞi as a matrix-Gaussian function in terms
of the random initial variables ξk, and the thermal average
can be carried out analytically (see Ref. [61]). For gBB ¼ 0
our coherent state approach becomes exact and we have
verified that our results match those from a functional
determinant approach [5]. Equation (5) allows one to
determine the temperature dependence of SðtÞ and from
its Fourier transform the absorption spectrum as shown in
Fig. 2 for a fixed impurity-bath interaction strength. One
notices a substantial broadening with increasing temper-
ature accompanied with a small shift of the peak position.
Finite impurity mass.—For a finite impurity mass the

variational states are Q dependent and the corresponding
integration in Eq. (2) cannot be carried out up front.
Furthermore the EOM Eq. (3) become nonlinear due to
the presence of the total phonon momentum Pph. For
T ¼ 0, Pph is proportional to the conserved polaron
momentum and thus vanishes in the case of an impurity
initially at rest. This does not hold, however, at finite
temperatures where Pph also contains the random initial
amplitudes ξk. For these reasons the case of a finite
impurity mass is substantially more involved compared
to zero temperature even within the coherent-state varia-
tional approach and one has to resort to approximations.
First, the projector on total-momentum eigenstates

can be written as Π̂Q ¼ ½1=ð2πÞ3� R d3zeiz·ðP̂ph−QÞ where

the action of the operator eiz·P̂ph ¼ Q
k e

iz·kâ†kâk can be
absorbed in a phase shift of the coherent amplitudes
β0kðtÞ → β0kðtÞe−iz·k. Thus evaluating SðtÞ for a finite
impurity mass is formally analogous to the infinite-mass
case, however, demanding two additional integrationsR
d3z and

R
d3Q, which presents a numerical challenge.

To address this issue, we here replace the phonon-momen-
tum operator in Π̂Q by its expectation value with respect to
the variational wave function, followed by an average over

the random thermal amplitudes, i.e., eiz·P̂ph → eiz·Pph . For an
impurity initially at rest one has Pph ¼ 0 and Π̂Q becomes
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the unity operator Π̂Q → δð3ÞðQ − PphÞ ¼ δð3ÞðQÞ. The Q
integration is then trivial and SðtÞ obeys again Eq. (5),
where βkðtÞ, β0kðtÞ, and ΔϕðtÞ now, however, follow
Eqs. (3) and (4) for a finite-mass impurity.
Accordingly, the EOM of βkðtÞ and β0kðtÞ, which are

given by Eq. (3) with Q ¼ 0, are still nonlinear. As outlined
in Ref. [61], the nonlinear terms in Eqs. (3) and (4) can be
approximated by a mean-field ansatz, where the quantities
PphβkðtÞ and ðPph − P0

phÞ2 are effectively replaced by
kn̄kβkðtÞ, and 2

P
k k

2n̄kðjβkðtÞj2 − jξkj2Þ, respectively.
To this end we note that at t ¼ 0 the βkðtÞ are Gaussian
random variables given by ξk and we can assume that they
remain Gaussian for all times. This finally renders the EOM
for βkðtÞ in a linear form that is amenable to an analytical
solution. Note that the equation for the total phase remains
nonlinear but can be readily integrated. As a result the
dynamical overlap can be expressed as matrix-Gaussian
functions in terms of ξk and the thermal averaging can be
carried out analytically. Most importantly the finite-temper-
ature dynamical overlap can then be written as a product of
the T ¼ 0 result S0ðtÞ and a finite-temperature factor fTðtÞ,

SðtÞ ¼ fTðtÞS0ðtÞ; ð6Þ

whose explicit analytic form is given in the Supplemental
Material [61].
The dynamical overlap SðtÞ calculated in this way is

shown in Fig. 3(a) as a function of time. Results are shown
for the attractive polaron for increasing temperatures in
units of the critical temperature Tc ¼ ð2π=mÞ½n=ζð3=2Þ�2=3
of a noninteracting gas in a box. While for zero tempera-
ture SðtÞ reproduces exactly the result from Ref. [43]
and approaches a finite value at large times given by
the zero-temperature quasiparticle weight, it decays expo-
nentially for T > 0 with an asymptotic behavior jSðtÞj∼
ZðTÞe−γðTÞt. The decay rates γðTÞ and thermal weights
ZðTÞ obtained from fits of the asymptotic tails are plotted in

Figs. 3(b) and 3(c) as a function of T=Tc for different
impurity-Boson interaction strengths (for more details
on the analysis of emerging, subleading quasiparticle
branches, see Ref. [61]). One recognizes an asymptotic
power-law scaling of both quantities as a function of T=Tc.
While this is reminiscent to the fermionic case [5], where
the exponents are given by the scattering phase shift at the
Fermi momentum, it remains an open question to find
analytical expressions for the exponents in the case of Bose
polarons where no such a special finite momentum exists
and scattering should predominantly take place at small
momenta, or a momentum scale ∼

ffiffiffiffiffiffiffiffi
kBT

p
determined by the

thermal de Broglie wavelength (at sufficiently large T).
Remarkably, we find that close to unitary interactions the
broadening of the quasiparticle peak, determined by γðTÞ,
shows a crossover to a linear temperature dependence,
which may be attributed to quantum critical behavior of
impurities in a Bose gas [39].
From the Fourier transform of SðtÞ, such as shown in

Fig. 3(a), we have calculated the absorption spectrum
for parameters of the experiment of Jørgensen et al. [38]
and [42]. The result, shown in Fig. 1, is in good agreement
with the experiment. The peak positions extracted from the
numerical simulations (red points) on the repulsive side
coincide with the experimental values (green points)
determined by Gaussian fits. In order to take into account
the inhomogeneous density distribution in the experiment
and the finite resolution of the spectrometer, we have made
a trap average, weighted by the BEC density, assuming a
Thomas-Fermi distribution. By convolution, we included a
Gaussian broadening using the experimental parameters
from Ref. [38]. On the attractive side the experimental
values for the lowest polaron branch, extracted from the
onset of the measured absorption spectrum (purple points),
agree with the onset of the absorption spectrum obtained
from our numerical simulations.
Summary.—We discussed the physics of a single, mobile

quantum impurity interacting with a BEC of atoms at finite
temperature. Extending the dynamical variational approach
of Ref. [43] to the case of an initial thermal state of
Bogoliubov phonons, we showed how thermal effects enter
the Hamiltonian in the Lee-Low-Pines frame that is used to
decouple the impurity from the phonon dynamics. To
describe polaron formation we calculated the real-time
polaron Green’s function SðtÞ and from it the absorption
spectrum AðωÞ for a transition of the impurity from a state
noninteracting to a state interacting with the environment.
Strong impurity-BEC interactions are accounted for by the
inclusion of two-phonon terms in the Hamiltonian [36].
Within the proposed variational approach one restricts the
dynamics to a submanifold of coherent-state wave func-
tions that are thermally averaged with Gaussian, random
initial amplitudes, with weights determined by the temper-
ature. While in the limit of an infinitely heavy impurity, the
EOMs become linear and the thermal average can be

FIG. 2. Absorption spectrum for attractive polaron for infinitely
heavy impurity M ¼ ∞ at different temperatures, and Bose-Bose
interaction strength knaBB ¼ 0.01. While increasing T=Tc leads
to a shift of the line center and a substantial broadening of the
quasiparticle peak, no new quasiparticle peaks appear.
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performed analytically, for a finite impurity mass a mean-
field approximation is required to allow for an analytical
thermal average. We calculated the temperature depend-
ence of SðtÞ for different interaction strengths, and found an
asymptotic exponential decay SðtÞ ∼ ZðTÞe−γðTÞt. The
extracted decay rates γðTÞ and thermal weights ZðTÞ show
a power-law dependence on T=Tc. Close to unitarity,
1=kna ¼ 0, the inverse polaron quasiparticle lifetime shows
a linear dependence on temperature that is indicative of
non-Fermi liquid behavior in the vicinity of the underlying
quantum critical point [39]. The comparison of the theo-
retical absorption spectra with a recent experiment [38,42]
shows that the inclusion of finite temperature corrections
leads to excellent agreement between theory and experi-
ment on the repulsive side that was lacking in previous
comparisons with T ¼ 0 calculations. Our results are also
in excellent agreement with the measured lowest polaron
branch as well as the widths of the absorption spectra. In
contrast to recent T-matrix calculations [41] we do not find
a splitting or separate temperature-induced quasiparticle
peaks of substantial spectral weight.
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FIG. 3. (a) Impurity Green’s function SðtÞ of an attractive
polaron with knaIB ¼ −1 for increasing (from top to bottom)
temperatures for m ¼ M and knaBB ¼ 0.01. While at T ¼ 0 the
overlap jSðtÞj approaches a finite value, it turns into an asymp-
totic exponential decay for T > 0. Extrapolating the exponential
to t ¼ 0 defines a finite-temperature weight ZðTÞ. (b) Decay rate
as function of T=Tc obtained from fits to exponential tails. Close
to unitary interactions a linear temperature dependence is found
(dashed), linked to quantum critical behavior in Ref. [39].
(c) Thermal weights ZðTÞ, where empty symbols show values
for T ¼ 0. As guide to the eye for interaction strength
ðknaIBÞ−1 ¼ ð−1;−2;−3Þ asymptotic power-law fits for γðTÞ ∼
ðT=TcÞν and ZðTÞ ∼ ðT=TcÞμ are shown with exponents
ν ¼ ð2.10; 2.28; 2.35Þ and μ ¼ ð0.65; 0.16; 0.07Þ.
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