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Effective field theory provides a way of parametrizing strong-field deviations from general relativity that
might be observable in the gravitational waves emitted in a black hole merger. To perform numerical
simulations of mergers in such theories it is necessary that the equations be written in a form that admits a
well-posed initial value formulation. We study gravity coupled to a scalar field including the leading (four-
derivative) effective field theory corrections. We introduce a new class of “modified harmonic” gauges and
gauge-fixed equations of motion, such that, at weak coupling, the equations are strongly hyperbolic and
therefore admit a well-posed initial value formulation.
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Introduction.—The detection of gravitational waves
from black hole (BH) mergers [1] is an opportunity to
perform the first precision tests of general relativity (GR) in
a strong field, highly dynamical regime. To do this, we need
theoretical templates for how a deviation from GR would
affect the gravitational waves produced in a BH merger.
Producing such templates requires numerical relativity
simulations of BH mergers in theories that modify GR
in some way. But there are two problems with this (see
e.g. [2]). First, which theory should be simulated? Many
theories of modified gravity have been proposed. Second,
to perform numerical simulations, it is essential that the
theory is written in a form that admits a well-posed initial
value problem. This means that, given suitable initial data,
there exists a unique solution of the equations of motion
that depends continuously on the data.
Effective field theory (EFT) provides a possible solution

to the first problem [3]. Without a preferred candidate for
whatever “UV physics” modifies GR, we can parametrize
our ignorance using the EFT methodology of adding to the
GR Lagrangian all possible higher derivative terms and
then using observations to constrain the coefficients of
these terms. This provides a nice way of parametrizing
small strong-field deviations from GR. The accuracy to
which one has tested GR can be quantified by how small
one has constrained the coefficients of the leading higher
derivative terms to be. Unfortunately, if one tries to do this
for vacuum gravity, one runs into the second problem. This
is because, after field redefinitions, the leading higher
derivative corrections to vacuum GR start at six derivatives
[3]. The equation of motion now involves higher than
second derivatives of the metric and therefore is unlikely to
admit a well-posed initial value problem. (See [4] for
discussion of this problem).
If one includes matter then one can do better. The

simplest case is GR minimally coupled to a scalar field.

Following the EFT philosophy, one adds all possible higher
derivative terms to the action. Assuming a parity symmetry,
field redefinitions can be used to bring the action to the
form [5]

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

16πG
½−VðϕÞ þ Rþ X þ αðϕÞX2 þ βðϕÞLGB�

ð1Þ

where we have neglected terms with six or more
derivatives, V, α, β are arbitrary functions, X ¼
−ð1=2Þgμν∂μϕ∂νϕ, and LGB is the Euler density associated
to the Gauss-Bonnet invariant

LGB ¼ 1

4
δμ1μ2μ3μ4ν1ν2ν3ν4 Rμ1μ2

ν1ν2Rμ3μ4
ν3ν4 : ð2Þ

The coupling of the scalar field to LGB implies that
spacetime curvature is a source for the scalar field, which
must therefore be nonzero near a BH. This may cause
observable deviations from GR in a BH merger. If one
imposes an additional symmetry that the equations of
motion are invariant under shifts in ϕ then V and α are
constants and β ¼ λϕ where λ is a constant. The dimen-
sionful constants α, λ then set a scale for UV physics.
EFT reasoning implies that the theory (1) is also relevant

to cosmology e.g. in early Universe inflation [5].
Remarkably, the equations of motion of (1) are second

order in derivatives. Hence it is possible that this theory
admits a well-posed initial value problem. Note that neglect
of terms in the action with six or more derivatives is
justified only in a regime in which spacetime curvature and
scalar field derivatives are small compared to the UV length
scales introduced by coupling constants associated with the
higher derivative corrections. Generically, this implies that
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the four-derivative corrections to the equations of motion
must also be small compared to the leading two-derivative
terms. We refer to this as the weakly coupled regime. It is
only in this regime that we can trust EFT. Weak coupling is
compatible with strong-field BH dynamics, as long as the
size of the BHs is large compared to the UV length scales.
Establishing well-posedness requires finding a “good

gauge” for the equations of motion and a good way of
performing the gauge fixing. The simplest choice for GR is
harmonic gauge, but it has been shown that this does not
work for (1): the initial value problem is not well posed
even at weak coupling [6,7]. This means that numerical
simulations of theories of the above type have been
restricted either to spherical symmetry [8–10] or to solving
the equations perturbatively [in λ for the case α ¼ 0,
βðϕÞ ¼ λϕ] [11–13]. The latter approach can suffer from
small effects gradually accumulating over time, leading to a
breakdown of perturbation theory in situations when the
EFT should be valid. A well-posed formulation of the
equations should be able to handle such secular effects [14].
In this Letter, we will introduce modifications of the

harmonic gauge condition and gauge-fixing procedure used
in GR. We will use these to define gauge-fixed equations of
motion for (1) and explain why these equations admit a
well-posed initial value problem at weak coupling. Our
formulation opens up the possibility of performing numeri-
cal simulations of black hole mergers in this theory without
resorting to perturbation theory.
We follow the conventions of [15]. Indices μ; ν;… run

from 0 to 3; indices i; j;… run from 1 to 3.
Modified harmonic gauge.—In a spacetime ðM; gÞ,

introduce two auxiliary (inverse) Lorentzian metrics g̃μν

and ĝμν such that the causal cone of gμν (i.e. the set of
timelike or null covectors) is strictly inside the causal cone
of g̃μν, and the latter is strictly inside the causal cone of ĝμν

[Fig. 1(a)]. Raising and lowering of indices will always be
performed using the physical metric. We write the inverses
of g̃μν and ĝμν as ðg̃−1Þμν and ðĝ−1Þμν. The causal cone of

ðĝ−1Þμν lies strictly inside that of ðg̃−1Þμν, which lies strictly
inside that of gμν [Fig. 1(b)]. These relations imply that a
surface that is spacelike with respect to gμν is also spacelike
with respect to the other two metrics. They also imply that
DðΣÞ ⊂ D̂ðΣÞ where DðΣÞ and D̂ðΣÞ are the domains of
dependence of a partial Cauchy surface Σ defined in the
usual way [15] with respect to the metrics gμν and ðĝ−1Þμν.
Our modified harmonic gauge condition on the coor-

dinates xμ is Hμ ¼ 0 where

Hμ ≡ g̃νρ∇ν∇ρxμ ¼ −g̃νρΓμ
νρ: ð3Þ

Given initial data for the coordinates xμ on a surface Σ
spacelike with respect to gμν (and hence also with respect to
g̃μν), this equation can be solved to construct coordinates in
the same way as in harmonic gauge GR [15].
We now let

Eμν ¼ −
16πGffiffiffiffiffiffi−gp δS

δgμν
; Eϕ ¼ −

16πGffiffiffiffiffiffi−gp δS
δϕ

: ð4Þ

The diffeomorphism invariance of our theory implies that
these satisfy the Bianchi identity

∇μEμν − Eϕ∇νϕ ¼ 0: ð5Þ

The equations of motion of (1), before gauge fixing, are

Eμν ¼ Eϕ ¼ 0: ð6Þ

We now define

Eμν
mhg ¼ Eμν þ P̂α

βμν∂βHα ð7Þ

where P̂α
βμν ¼ δðμα ĝνÞβ − 1

2
δβαĝμν. Our modified harmonic

gauge equations of motion are then

Eμν
mhg ¼ 0; Eϕ ¼ 0: ð8Þ

If we set g̃μν ¼ ĝμν ¼ gμν then these reduce to the usual
harmonic gauge equations of motion. The latter do not
admit a well-posed initial value problem [6,7]. The reason
for this can be traced to the fact that, in harmonic gauge,
unphysical “gauge-condition violating” modes travel at the
same speed as “pure gauge” modes. Choosing g̃μν and ĝμν

as explained above eliminates this degeneracy. It also
ensures that the “fastest” modes are the physical modes.
We will now sketch the proof that the initial value

problem for (8) is well posed. A full proof will appear
in [16].
A slight modification of the usual argument for harmonic

gauge GR [15] can be used to prove that (8) propagates the
gauge condition. Given a solution ðM; g;ϕÞ of (8), Eq. (5)
implies

(b)(a)

FIG. 1. (a) Cotangent space, showing the null cones of gμν, g̃μν,
and ĝμν. (b) Tangent space, showing the null cones of gμν, ðg̃−1Þμν,
and ðĝ−1Þμν.
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0 ¼ ∇νE
μν
mhg ¼

1

2
ĝαβ∂α∂βHμ þ � � � ð9Þ

where the ellipsis denotes terms linear in first derivatives of
Hρ. Let Σ ⊂ M be a surface that is spacelike with respect to
gμν and hence spacelike with respect to ĝμν. Equation (9)
admits a well-posed initial value problem for initial dataHμ

and ĝνρnν∂ρHμ prescribed on Σ (where n is the unit normal
of Σ with respect to g). Hence any solution of (8) for which
Hμ and its normal derivative vanish on Σ will have Hμ ≡ 0

in D̂ðΣÞ and therefore satisfy (6) in D̂ðΣÞ.
Initial data is a quintuple ðΣ; hij; Kij;Φ;ΨÞ where Σ is a

three-manifold and, in a coordinate chart xi on Σ, hij is a
Riemannian metric on Σ, Kij a symmetric tensor, and Φ, Ψ
are functions on Σ specifying the scalar field and its normal
derivative on Σ. These must satisfy the constraint equations
arising from (6). We perform a 3þ 1 split of gμν, with
coordinates xμ ¼ ðx0; xiÞ and using the usual lapse function
and shift vector [17]. This ensures that surfaces of constant
x0 are spacelike with respect to gμν and hence also with
respect to the other two metrics. At x0 ¼ 0 the choice of
lapse and shift is arbitrary. Given such a choice, the initial
values of gij and ∂0gij are chosen so that the surface x0 ¼ 0

has induced metric hij and extrinsic curvature Kij. The
initial value of ϕ is Φ and the initial value of ∂0ϕ is chosen
so that n · ∂ϕ ¼ Ψ. The time derivatives of the lapse and
shift at x0 ¼ 0 are uniquely specified by demanding Hμ ¼
0 at x0 ¼ 0. This implies ∂iHμ ¼ 0 at x0 ¼ 0. Evaluating
the 0μ components of (8) and using the constraint
equations E0μ ¼ 0 gives ∂0Hμ ¼ 0 at x0 ¼ 0. Given a
solution ðM; g;ϕÞ of (8) arising from this initial data, we
identify Σ with the surface x0 ¼ 0, and the argument above
shows that Hμ ≡ 0 in D̂ðΣÞ hence (6) is satisfied
in DðΣÞ ⊂ D̂ðΣÞ.
Sufficient conditions for well-posedness of the initial

value problem for (8) are that the equations are strongly
hyperbolic and the initial data is prescribed on a surface that
is noncharacteristic [18]. See [6] or [19] for definitions of
these terms.
The principal symbol of (8) is calculated by lineari-

zing around an arbitrary “background” field configuration
and making the replacements ∂μ∂νδgρσ → ξμξνtρσ and
∂μ∂νδϕ → ξμξνψ where ξμ is an arbitrary covector and
tμν is symmetric. We combine tμν and ψ into a vector TI ¼
ðtμν;ψÞT where indices I; J;… refer to a basis for the 11-
dimensional space of such vectors. The principal symbol of
(8) is an 11 × 11 matrix PIJðξÞ ¼ PIJμνξμξν where PIJμν

depends on the background metric, Riemann tensor,
and up to two derivatives of the background ϕ field.
The covector ξμ is characteristic if there exists TI ≠ 0

such that

PIJðξÞTJ ¼ 0 ð10Þ

equivalently detPðξÞ ¼ 0. A characteristic covector corre-
sponds to the wave vector of a high frequency wave
solution of (8), with polarization TI.
As discussed above, by writing our initial metric in 3þ 1

(lapse-shift) form with coordinates ðx0; xiÞ we ensure that
our initial surface x0 ¼ 0 is spacelike with respect to g.
Hence, by continuity, surfaces of constant x0 are spacelike
at least for small x0. We define three matrices as

AIJ ¼ PIJ00; BIJ ¼ 2ξiPIJ0i; CIJ ¼ ξiξjPIJij:

ð11Þ

If surfaces of constant x0 are noncharacteristic then AIJ is
invertible and we can define the 22 × 22 matrix

MðξiÞ ¼
�

0 I

−A−1CðξiÞ −A−1BðξiÞ

�
: ð12Þ

Let Gij be a smooth (inverse) Riemannian metric on these
surfaces. Strong hyperbolicity is the statement that, for any
(real) unit (with respect to Gij) covector ξi on such a
surface, the matrix MðξiÞ admits a symmetrizer: a positive
definite Hermitian matrix KðξiÞ such that KðξiÞMðξiÞ ¼
MðξiÞ†KðξiÞ. KðξiÞ must depend smoothly on ξi and also
on the spacetime coordinates xμ that we have suppressed
above. Strong hyperbolicity implies that MðξiÞ is diago-
nalizable with real eigenvalues. Conversely, strong hyper-
bolicity follows if MðξiÞ is diagonalizable with real
eigenvalues and eigenvectors depending smoothly on ξi.
ξ0 is an eigenvalue of MðξiÞ iff ξμ ¼ ðξ0; ξiÞ is a character-
istic covector. The corresponding eigenvectors have the
form ðTI; ξ0TIÞT where TI satisfies (10).
Consider first the two-derivative (2∂) theory obtained by

setting α ¼ β ¼ 0 in (1). In this case, ξμ is characteristic if,
and only if, it is null with respect to one of our three metrics
[16]. This implies that spacelike (with respect to g) surfaces
are noncharacteristic. For given ξi there are two character-
istics null with respect to each metric (associated to the
future and past null cones), and two corresponding real
eigenvalues ξ0. Hence MðξiÞ has six real eigenvalues. The
characteristics ξ̃�μ ¼ ðξ̃�0 ; ξiÞ null with respect to g̃μν arise
from a residual gauge symmetry of (8): each has a 4d space
of solutions of (10) and hence a 4d eigenspace of MðξiÞ.
The two characteristics ξ�μ ¼ ðξ�0 ; ξiÞ null with respect to
gμν are associated with physical polarizations, each with a
3d eigenspace (corresponding to 2 graviton and 1 scalar
field degree of freedom). The two characteristics ξ̂�μ ¼
ðξ̂�0 ; ξiÞ null with respect to ĝμν are also characteristics of
(9); these are associated with gauge-condition violating
polarizations. Each has a 4d eigenspace. The total dimen-
sionality of the eigenspaces is 22 soMðξiÞ is diagonalizable
with real eigenvalues ξ0. In each case the solutions TI of
(10) depend smoothly on ξi [16]. This is sufficient to ensure
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strong hyperbolicity. Thus our modified harmonic gauge
formulation of the 2∂ theory admits a well-posed initial
value formulation. By setting the scalar field to zero, this
new formulation also applies to vacuum GR.
We now include the four-derivative (4∂) terms.

Decompose the principal symbol into a part P2ðξÞ arising
from the 2∂ terms in (8) (including the gauge-fixing terms)
and a part δPðξÞ arising from the 4∂ terms. Explicit
expressions for the latter can be found in [7]. By “weakly
coupled” we mean that the components δPIJμν are small
compared to PIJμν

2 . This will be the case if the components
of the Riemann tensor, and the first and second deri-
vatives of the scalar field, are small compared to any length
scales (e.g. coupling constants) appearing in the higher-
derivative terms. By continuity, if initial data is chosen so
that the theory is weakly coupled then the resulting
solution will be weakly coupled at least for a small time
interval.
Spacelike surfaces of constant x0 are noncharacteristic iff

detAIJ ≠ 0. This condition is satisfied in the 2∂ theory and
so, by continuity, it is also satisfied in the 4∂ theory at
sufficiently weak coupling. However, this condition may
fail at strong coupling. The eigenvalues of MðξiÞ depend
continuously on MðξiÞ and so, at weak coupling, we can
divide the eigenvalues into six groups according to which
eigenvalue (ξ̃�0 ; ξ�0 or ξ̂�0 ) of the 2∂ theory they reduce to at
zero coupling. For each group we can define a “total
generalized eigenspace” as the direct sum of the spaces
corresponding to the Jordan blocks of the eigenvalues in
that group [6]. This defines six (complex) vector spaces
which we denote Ṽ�, V�, and V̂�.
The pure gauge characteristics ξ̃�μ of the 2∂ theory are

also characteristics of the 4∂ theory. Hence ξ̃�0 are eigen-
values ofMðξiÞ. The eigenvectors are the same as for the 2∂
theory. Thus Ṽ� are 4d genuine eigenspaces. A continuity
argument [16] establishes that, at weak coupling, the
covectors ξ̂�μ are also characteristic so ξ̂�0 are eigenvalues
of MðξiÞ. Each is associated with four eigenvectors that
depend smoothly on ξi. So V̂� are also 4d genuine
eigenspaces. [In standard harmonic gauge this argument
fails because the pure gauge and gauge-condition violating
eigenvalues are degenerate with each other. This allows the
matrixMðξiÞ to develop nontrivial Jordan blocks when one
deforms from the 2∂ to the 4∂ theory [6,7]. Our modified
harmonic gauge formulation eliminates this degeneracy
and thereby avoids this problem].
The spaces V� are associated to the “physical” eigen-

values. In this case, we expect the three-fold degeneracy of
the 2∂ theory to be split by the 4∂ terms, i.e., generically
the two graviton polarizations and the scalar field will
propagate with different speeds. In this case, it is not clear
that the associated eigenvectors of MðξiÞ will depend
smoothly on ξi at values for which degeneracy of eigen-
values occurs. To evade this problem we construct a

symmetrizer directly. Consider the matrices (our sign
convention is ∓ g0μξ�μ > 0)

H�⋆ ¼ �
�
B⋆ A⋆
A⋆ 0

�
ð13Þ

where A⋆ and B⋆ are defined as in (11) but omitting the
gauge-fixing terms from P. These matrices are real
symmetric [6]. Define a Hermitian form on V� by
ðvð1Þ; vð2ÞÞ� ¼ vð1Þ†H�⋆ vð2Þ where vð1Þ; vð2Þ ∈ V�. It can
be shown that ð; Þ� is positive definite in the 2∂ theory [16].
Hence, by continuity, it is positive definite at weak coupling
in the 4∂ theory, and therefore defines an inner product
on V�.
It can be shown [16] that H�⋆ is a symmetrizer for MðξiÞ

within V�. In particular, this implies that the eigenvalues
associated with V� are real, and that V� admits a basis of
eigenvectors. The latter may fail to be smooth in ξi at points
of degeneracy. But the symmetrizer H�⋆ is smooth by
definition. A symmetrizer for MðξiÞ can now be con-
structed as a block diagonal matrix where the blocks
associated to V� are H�⋆ and the blocks associated to
the other spaces are constructed from the (smooth) eigen-
vectors on these spaces in the usual way.
Discussion.—Several steps in our argument make use of

the weakly coupled assumption. If the theory enters a
strongly coupled regime then well-posedness can fail [6,8–
10] but, from an EFT perspective, we do not expect (1) to
be valid at strong coupling anyway.
Although we have focused on the theory (1), our

modified harmonic gauge condition can be applied to
obtain strongly hyperbolic formulations of any weakly
coupled Lovelock [20] or Horndeski [21] theory [16]. The
former includes Einstein-Gauss-Bonnet theory, which gives
the leading four-derivative EFT corrections to vacuum GR
in higher dimensions.
We saw above that, given a solution ðM; gÞ of (8) arising

from initial data satisfying the constraint equations and
gauge condition on Σ ⊂ M, this solution will satisfy (6)
throughoutDðΣÞ. We defineDðΣÞ to be the region in which
the solution is uniquely determined by the initial data. For
the 2∂ theory we will haveDðΣÞ ¼ DðΣÞ. But for a weakly
coupled 4∂ theory, generically, some of the physical
characteristics will be spacelike with respect to g. Since
information can propagate along these characteristics, this
will imply DðΣÞ ⊂ DðΣÞ. Our analysis establishes local
well-posedness, which ensures uniqueness in a neighbor-
hood of Σ.
Our formulation depends on the choice of the auxiliary

metrics g̃μν and ĝμν. One way of choosing these is to set
g̃μν ¼ gμν − anμnν and ĝμν ¼ gμν − bnμnν where nμ is a
unit (with respect to g) vector field and aðxÞ, bðxÞ are
functions. In a numerical simulation one might choose nμ to
be normal to surfaces of constant x0 and a, b to be
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constants. The ordering of the 3 null cones assumed above
requires 0 < a < b. However, this ordering can be changed
as long as the null cones do not intersect and surfaces of
constant x0 are spacelike with respect to to all three metrics
[16]. Such a change would affect the domain of dependence
properties of the equation.
Finally, our modified harmonic gauge may be useful

even in conventional GR. We will discuss this in [16].
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