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We prove that the quantum Gibbs states of spin systems above a certain threshold temperature are
approximate quantum Markov networks, meaning that the conditional mutual information decays rapidly
with distance. We demonstrate the exponential decay for short-ranged interacting systems and power-law
decay for long-ranged interacting systems. Consequently, we establish the efficiency of quantum Gibbs
sampling algorithms, a strong version of the area law, the quasilocality of effective Hamiltonians on
subsystems, a clustering theorem for mutual information, and a polynomial-time algorithm for classical
Gibbs state simulations.

DOI: 10.1103/PhysRevLett.124.220601

Introduction.—Quantum Gibbs states describe the ther-
mal equilibrium properties of quantum systems. The advent
of quantum information science opened up new investiga-
tion avenues in the study of Gibbs states, such as the
stability of topological quantum memory [1–4], thermal-
ization in isolated quantum systems [5–10], and
Hamiltonian complexity [11–14]. Efficient methods to
prepare quantum Gibbs states in quantum computers have
also proved useful in giving quantum speed-ups for
problems such as semidefinite programming [15–17] and
quantum machine learning [18–22].
Quantum Gibbs states also inherit the locality of their

parent Hamiltonians, which allows for an efficient classical
description in many cases. One of the simple character-
izations is the exponential decay of bipartite correlation
functions, which is true in general one-dimensional quan-
tum spin lattices [23] and in higher dimensions above a
threshold temperature [24–28]. Another characterization is
that at arbitrary finite temperatures, the mutual information
between a region and its complement obeys the area law
[29]. Quantum Gibbs states also have efficient representa-
tions in terms of tensor networks [30,31].
In classical systems, there are even stronger structural

results for Gibbs states. For instance, the Hammersley-
Clifford theorem [32] states that classical Gibbs states are
equivalent to a class of probability distributions called

Markov networks. They satisfy the Markov property; that
is, a site is independent from all others conditioned on its
neighbors. Therefore, for classical Gibbs states, all the
correlations between two separated vertices are induced by
the intermediate vertices connecting them.
Although the notion of conditional probability distribu-

tion is missing in quantum systems, we can still generalize
Markov networks to quantum systems using the (quantum)
conditional mutual information:

IρðA∶CjBÞ ≔ SðρABÞ þ SðρBCÞ − SðρABCÞ − SðρBÞ; ð1Þ

where ρAB is the reduced density matrix in the subsystem
ðAB ¼ A ∪ BÞ, and SðρABÞ is the von Neumann entropy,
namely, SðρABÞ ≔ −trðρAB log ρABÞ. In classical systems,
the conditional mutual information becomes zero if and
only if the state is conditionally independent. In quantum
cases, the conditional mutual information is related to the
approximate recoverability [33]; hence, it is widely used as
the measure of conditional independence in quantum
systems.
The quantum version of the Hammersley-Clifford

theorem has been established for the case where the
Hamiltonian is short range and commuting [34,35]:
Any quantum Gibbs state of such a Hamiltonian on a
triangle-free graph is a Markov network and vise versa.
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More recently, it has been shown that the Hammersley-
Clifford theorem approximately holds in a one-dimensional
lattice [36], in the sense that the conditional mutual
information of any Gibbs state decays subexponentially
with respect to distance.
In the present Letter, we will establish the approximate

Markov property for quantum Gibbs states in spin systems
interacting on generic graphs. In our Letter, we consider not
only short-range interactions but also long-range (i.e.,
power-law decaying) interactions on graphs. We prove
that above a certain threshold temperature, the conditional
mutual information decays exponentially (polynomially)
for short-ranged (long-ranged) models. Our result will
strengthen the 1D result obtained in Ref. [36], the area
law for mutual information [29], and the standard clustering
theorem [27,28]. Moreover, our result immediately implies
a quasi-polynomial-time quantum Gibbs sampling algo-
rithm by following the discussion in Ref. [37]. Finally, for
computing thermodynamic quantities (e.g., the partition
function), we develop a polynomial-time classical algo-
rithm for the first time.
Setup.—We consider a quantum system with n spins,

where each spin has a d-dimensional Hilbert space. We
assume that the spins sit on the vertices of a graph G ¼
ðV; EÞ where V is the total spin set (jVj ¼ n). For arbitrary
subsystems A;B ⊂ V, we define dA;B as the shortest path
length on the graph that connects A and B. If A ∩ B ≠ ∅,
dA;B ¼ 0. We define the surface region of an arbitrary
subsystem L ⊆ V as ∂Ll ⊆ V (l ∈ N):

∂Ll ≔ fv ∈ Ljdv;Lc ≤ lg; ð2Þ

where Lc is the complementary set of L (i.e., L ∪ Lc ¼ V).
We define the system Hamiltonian H as

H ¼
X

jXj≤k
hX; ð3Þ

where each interaction term fhXg acts on the spins in
X ⊂ V. The Hamiltonian [Eq. (3)] describes generic k-body
interacting systems. We characterize the locality of the
interactions as follows:

X

XjX∋v
diamðXÞ≥R

khXk ≤ fðRÞ with fð1Þ ≤ g ð4Þ

for ∀ v ∈ V, where k · k is the operator norm and diamðXÞ
is the diameter of X, namely, diamðXÞ ≔
maxfv1;v2g∈X dv1;v2 for X ⊂ V. The parameter g corresponds
to one-spin energy since

P
XjX∋v khXk ≤ fð1Þ ≤ g. By

taking the energy unit appropriately, we set g ¼ 1. For
example, if k ¼ 2 and fðRÞ ¼ 0 for R ≥ 2, the Hamiltonian
is described by bipartite nearest-neighbor interactions as
H ¼ P

fi;jg∈E hi;j. We consider the Gibbs state for the
Hamiltonian H at an inverse temperature β as follows:

ρ ≔
1

Z
e−βH; Z ≔ trðe−βHÞ:

Our purpose is to discuss the Markov property of Gibbs
states. Let V0 ⊆ V be an arbitrary subsystem. Consider a
tripartite partitioning of V0 as V0 ¼ ABC, where we denote
A ∪ B by AB for simplicity. We notice that the subsystems
fA; B;Cg are not necessarily concatenated on the graph
(see Fig. 1). If any two nonadjacent subsystems A and C
are conditionally independent of the other subsystem B
(¼ V0nAC), we say that ρV0 is the quantum Markov
network on V0. Mathematically, this implies IρðA∶CjBÞ ¼
0 for dA;C > 0 [34,38], where IρðA∶CjBÞ is defined in
Eq. (1). It is noteworthy that the Markov property of ρV0

strongly depends on the selection of the subsystem V0 ⊆ V.
To prove this point, let us consider a one-dimensional
graph. Then, the GHZ state is a Markov network for
∀V0 ⊂ V, but not globally, namely, IρðA∶CjBÞ ¼ 1 for
ABC ¼ V. In contrast, the cluster state [39] is globally a
Markov network, but not for particular selections of V0

[40,41] (see also Ref. [42]). Based on the example of the
cluster state, which has a finite correlation length and is
described by the matrix product state with bond dimension
two [43], we cannot ensure the Markov property only using
the clustering theorem and matrix product (or tensor
network) representation of the quantum Gibbs state.
The Markov property has a clear operational meaning in

terms of a recovery map as follows: If ρV0 is a Markov
network, we can always find a quantum channel τB→BC
referred to as the Petz recovery map [38,46], which
recovers ρABC from ρAB (V0 ¼ ABC):

τB→BCðρABÞ ¼ ρABC:

The above local reconstruction is not possible for generic
quantum states. Note that any quantumMarkov network on
a tree graph can be constructed from a sequence of n local
quantum channels.

FIG. 1. Decomposition of the total system into A, B, C, and D.
It is possible that in a quantum state, there is no correlation
between A and Cwhen considering only the subsystems A and C;
however, there is a strong correlation when looking at them via
the subsystem B. This kind of correlation between A and B
related to C is measured by conditional mutual information (1).
Physically, conditional mutual information characterizes tripartite
correlations between A, B, and C. A representative example is the
topological entanglement entropy [44,45], which is a special form
of the conditional mutual information.
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In realistic situations, we frequently encounter cases
where the density matrix is not given by the exact Markov
network but by an approximate Markov network; that is,
the conditional mutual information IρðA∶CjBÞ approaches
zero as the distance dA;C increases. In the case where
IρðA∶CjBÞ ¼ ϵ, the celebrated Fawzi-Renner theorem [33]
(see also Refs. [47–54]) ensures the existence of the
recovery map such that

kτB→BCðρABÞ − ρABCk21 ≤ ϵ log 2; ð5Þ

where k · k1 is the trace norm [i.e., kOk1 ≔ trð
ffiffiffiffiffiffiffiffiffiffi
O†O

p
Þ for

an operator O]. Here, the form of τB→BC is given by the
rotated Petz map [54]. Based on this theorem, we can still
relate the approximate Markov property to the local
reconstruction of the state.
The main purpose of this study was to characterize the

decay rate of the conditional mutual information
IρðA∶CjBÞ with respect to the distance dA;C on the graph.
To explain the physics of the theorems, we have provided
the proofs of our main theorems in the Supplemental
Material [55].
Main result.—We proved the exponential decay of the

conditional mutual information above a temperature
threshold:
Theorem 1: Let us consider finite-range interaction up

to a finite length r; that is, we consider a function fðRÞ in
inequality (4) such that fðRÞ ¼ 0 for R > r ∈ N. Then, the
condition

β < βc ≔
1

8e3k
ð6Þ

implies that the Gibbs state ρ is an approximate Markov
network on an arbitrary subset V0 ⊆ V in the sense that

IρðA∶CjBÞ ≤ eminðj∂Arj; j∂CrjÞ
ðβ=βcÞdA;C=r
1 − β=βc

; ð7Þ

where V0 ¼ ABC and the subset ∂Ar (∂Cr) is defined by
Eq. (2) with l ¼ r and L ¼ A (L ¼ C).
We notice that if we select B as an empty set (i.e.,

B ¼ ∅), the conditional mutual information reduces to
bipartite mutual information:

IρðA∶Cj∅Þ ¼ IρðA∶CÞ;

where IρðA∶CÞ ≔ SðρAÞ þ SðρCÞ − SðρACÞ. Therefore,
inequality (7) also implies the exponential decay of the
mutual information between two separated subsystems. It is
an improved version of the standard clustering theorem
for the bipartite operator correlation CorρðOA;OBÞ ≔
trðρOAOBÞ − trðρOAÞtrðρOBÞ, where OA and OB are arbi-
trary operators with unit norm (i.e., kOAk ¼ kOBk ¼ 1)
supported on subsystems A and B, respectively. From the

relation ½CorρðOA;OBÞ�2 ≤ 2IρðA∶BÞ [29], the clustering
theorem can be derived from the exponential decay of the
mutual information. Moreover, it is well known [56,57] in
the context of data hiding that even if the operator
correlation is arbitrarily small in a quantum state, the state
may still be highly correlated in terms of the mutual
information [29].
An important implication of this theorem is related to the

quantum sampling of Gibbs states. Based on the Fawzi-
Renner theorem (5), an approximate Markov network can
be efficiently reconstructed from its reduced density matrix
using a quantum computer. According to Ref. [37], the
clustering and Markov properties ensure an efficient
preparation of quantum Gibbs states on finite-dimensional
lattices. By combining our Theorem 1 with Theorem 5 in
Ref. [37], we obtain the following statement.
Let us consider the case where the graph G is given by a

D-dimensional lattice, where D is the spatial dimension.
Then, under the assumption of Theorem 1, there exists a
completely positive trace-preserving (CPTP) map of F ¼
FDþ1 � � � F2F1 such that

kFðψÞ − ρk1 ¼ 1=polyðnÞ;

where ψ is an arbitrary quantum state, and each of fF sgDþ1
s¼1

is given by a direct product of quasilocal CPTP maps that
act on OðlogD nÞ spins.
The number of the elementary gates for the each quasi-

local channel fF sgDþ1
s¼1 is on the order exp½OðlogD nÞ� ¼

nOðlogD−1 nÞ [58,59]. This also provides the computational
time of Gibbs sampling by the quantum computer. This
algorithm requires only quasipolynomial computational
time, and it is considerably better than a few existing
algorithms [60,61], which require at least subexponential
computational time. Our algorithm still performs slightly
worse than the algorithms proposed in Refs. [62,63], which
require polynomial computational time. However, our
method has advantages in the following senses: The
method in Ref. [62] is applicable only to commuting
Hamiltonians, and the method in Ref. [63] requires twice
the number of qubits (i.e., 2n qubits) for implementation.
The second implication of the theorem is the strengthen-

ing of the area law. The area law for mutual information
was derived at arbitrary temperatures in Ref. [29] in the
following form:

IρðA∶BÞ ≤ cβj∂Aj; ð8Þ

where AB ¼ V and c is an Oð1Þ constant. The area law
implies that IρðA∶B0Þ saturates as B0 ⊂ B grows to B;
however, Eq. (8) does not provide the saturation rate. Our
result implies it saturates exponentially fast, and the mutual
information between two subsystems is exponentially
localized around the boundary between A and B. For
further understanding, let us decompose B into l0 slices,
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B1B2;…; Bl0 , with dA;Bl
¼ l for l ¼ 1; 2;…; l0 (see Fig. 2).

Then, the question is how rapidly the mutual information
IρðA∶B1B2 � � �BlÞ saturates to IρðA∶BÞ. From the relation
IðA∶CjBÞ ¼ IðA∶BCÞ − IðA∶BÞ and inequality (7), we
have

IρðA∶B1 � � �BlÞ − IρðA∶B1 � � �Bl−1Þ
¼ IρðA∶BljB1 � � �Bl−1Þ ∼ ðβ=βcÞl=r; ð9Þ

which shows exponential decay with respect to l.
Effective Hamiltonian on subsystem and classical

simulation of Gibbs state.—Theorem 1 is related to the
locality of the effective Hamiltonian. We define the
effective Hamiltonian of the local reduced density matrix as

H̃L ≔ −β−1 log trLcðe−βHÞ: ð10Þ

We formally describe H̃L as

H̃L ¼ HL þΦL; ð11Þ

where HL is composed of the original interacting terms in
H on subsystem L, namely, HL ¼ P

X⊂L hX, and ΦL is the
effective interaction term. We are interested in the locality
ofΦL. Typically, it is computationally difficult to determine
the effective term, even in classical Gibbs states [64]. Our

present question is whether the (quasi)locality ofΦL can be
ensured (Fig. 3). In classical Gibbs states or systems with
commuting Hamiltonians, ΦL is exactly localized around
the surface region of L (not necessarily localized along the
boundary). This point is crucial for the Gibbs states to be
the exact Markov networks [34,37]. Additionally, for
systems with noncommuting Hamiltonians, the quasilocal-
ity of ΦL is numerically verified in Ref. [66]. By following
the same analysis as the proof of Theorem 1, we can
rigorously prove the quasilocality of ΦL not only in the
direction orthogonal to the boundary but also along the
boundary.
Theorem 2: Using the setup and assumption of

Theorem 1, ΦL is approximated using a localized operator
Φ∂Ll

as follows:

kΦL −Φ∂Ll
k ≤

e
4β

ðβ=βcÞl=r
1 − β=βc

j∂Lrj;

where Φ∂Ll
is supported on the region ∂Ll that has been

defined in Eq. (2). In addition, Φ∂Ll
is composed of local

operators that act on at most ðkbl=rcÞ spins (see
Supplemental Material [55] for an explicit form of
Φ∂Ll

). Moreover, computation of ΦL up to a norm error
of nϵ is performed with the runtime bounded from above by

nð1=ϵÞO(k logðddrGÞ);

where dG is the degree of the graph G.
This theorem immediately implies that the classical

simulation of the Gibbs states is possible in polynomial
time within an error of 1=polyðnÞ. We note that the
definition (10) implies ΦL ¼ −β−1 logðZÞ for L ¼ ∅;
i.e., we can calculate the partition function using the same
algorithm. We can also calculate the expectation values of
local observables or the local entropy by explicitly
obtaining the expression ρL ¼ e−βH̃L . This is summarized
in the following corollary.
Corollary 1: Thermodynamic properties such as local

observables (e.g., energy and magnetization), the partition
function logðZÞ, and local entropy −trðρL log ρLÞ are
classically simulated in polynomial time polyðnÞ as long
as an error of 1=polyðnÞ is allowed.
From Ref. [31], we can prepare tensor network repre-

sentations for arbitrary Gibbs states in the polynomial time
of nOðβÞ. However, the classical simulation of the tensor
network is #P complete problem [67,68] except in 1D
cases. To the best of our knowledge, our result, for the first
time, provides the fully-polynomial-time approximation
scheme (FPTAS [69]) for the classical simulation of
quantum Gibbs states, which is a quantum generalization
of the FPTAS for classical Gibbs states [70–72].
Long-range interacting systems.—Finally, we extend

Theorem 1 from short-range interacting systems to long-
range interacting systems. We define the Hamiltonian with

FIG. 2. Strengthening of the area law resulting from the Markov
property. In the figure, we consider a 2D system and decompose it
into A and B ¼ B1B2;…; Bl0 with dA;Bl

¼ l (1 ≤ l ≤ l0).

FIG. 3. Effective Hamiltonian H̃L for the reduced density
matrix ρL. We decompose H̃L as H̃L ¼ HL þΦL, where HL
is the original Hamiltonian in L and ΦL is the effective term that
originates outside L. Theorem 2 implies that ΦL is exponentially
localized around the surface region of L.
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the power-law decay interaction assuming that fðRÞ in
Eq. (4) is given by

fðRÞ ¼ R−α;

where α > 0. To consider a more general form as
fðRÞ ¼ gR−α, we must only scale the inverse temperature
from β to β=g. For example, we can consider the following
Hamiltonian on a graph with a D-dimensional structure:

H ¼
X

i;j∈V

J

RαþD
i;j

hi;j with khi;jk ¼ 1;

where Ri;j is the distance between spins i and j defined by
the graph structure ðV; EÞ, and J is determined so that
inequality (4) is satisfied. This type of Hamiltonian is now
controllable in realistic experiments and attracts consid-
erable attention both in experimental [73–77] and theo-
retical aspects [78–82].
Similar to the case of short-range interacting systems, we

prove the decay of the conditional mutual information for
long-range interacting systems for α > 0.
Theorem 3: Let A, B, and C be arbitrary subsystems in

V (A;B; C ⊂ V). Then, under the assumptions of β <
βc=11 and dA;C ≥ 2α, the Gibbs state ρ satisfies the
approximate Markov property as follows:

IρðA∶CjBÞ ≤ βminðjAj; jCjÞ Cβ

dαA;C
; ð12Þ

where Cβ ≔ ½ð11e1=k=βcÞ=ð1 − 11β=βcÞ� and βc is as
defined in Eq. (6).
By selecting B ¼ ∅, we can also derive the power-law

decay of the mutual information between two separated
subsystems. To the best of our knowledge, the clustering
theorem for the Gibbs state with long-range interaction is
limited for classical cases [83–88] and special quantum
cases [89,90]. Our result provides the first general proof of
the clustering theorem at finite temperatures in long-range
interacting quantum systems.
Proof ideas of the main theorems.—We finally show the

proof ideas to obtain the decay of the conditional mutual
information. The proof utilizes a high-temperature expan-
sion. The difficulty lies in the fact that the standard cluster
expansion technique cannot be applied to the logarithm of
the reduced density matrix (e.g., ρL with L ⊂ Λ). We
introduce a new technique of the generalized cluster
expansion, which allows us to systematically treat loga-
rithmic operators (see Sec. I B in Ref. [55]). Here, we
parametrize the Hamiltonian (3) as Ha⃗ ¼

P
X∈Λ aXhX with

a⃗ ¼ faXgX∈Λ. We then parametrize a target function of
interest by fa⃗ and directly expand it with respect to a⃗,
where fa⃗ can be chosen as a scholar function and also as an
operator function. Here, we choose the conditional mutual
information as the function fa⃗. The challenge in the

generalized cluster expansion is to estimate the conver-
gence radius of the expansion, where we need to consider a
multiple derivative of the operators like log½trLcðe−βHa⃗Þ�
with L ⊂ Λ. Our technical contributions are the system-
atical expression of the multiple derivative in the general-
ized cluster expansion (e.g., Propositions 3 and 4 in
Ref. [55]) and the estimation of the convergence radius
(see Ref. [55] for the details).
Future perspective.—Here we mention an open problem.

The most important problem is the Markov property in low-
temperature regimes, where our present analytical tech-
nique (i.e., the generalized cluster expansion [55]) breaks
down. It is no longer desirable that the Markov property
holds for the arbitrary selections of the subregions A, B, and
C because the topological order can exist at finite temper-
atures in four-dimensional systems [1]. Further, we hope to
apply the current analyses to other essential problems, such
as the contraction problem of the projected entangled pair
states [91–94] and efficiency guarantee of the heuristic
classical algorithms for the quantum Gibbs states [95–99].
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Note added.—Regarding the classical simulations of quan-
tum Gibbs states, we identified a related result obtained
using a similar approach [100] at the same time of our
submission.
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(2018).

[54] M. Junge, R. Renner, D. Sutter, M. M. Wilde, and A.
Winter, Universal recovery maps and approximate suffi-
ciency of quantum relative entropy, Ann. Inst. Henri
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