Comment on "Effective Confining Potential of Quantum States in Disordered Media"

In the Letter [1], the inverse of the landscape function u(x) introduced in Ref. [2] was shown to play the role of an effective potential. This leads to the following estimation of the integrated density of states (IDoS), in one dimension,

$$\mathcal{N}_{\text{ADJMF}}(E) = \frac{1}{\pi} \int_{u(x)>1/E} dx \sqrt{E - 1/u(x)}. \tag{1}$$

We consider here two disordered models for which we obtain the distribution of u(x) and argue that the precise spectral singularities are not reproduced by Eq. (1).

Pieces model.—We consider the Schrödinger Hamiltonian $H = -d^2/dx^2 + \sum_n v_n \delta(x - x_n)$, where the positions of the δ potentials are independently and uniformly distributed on [0, L] with mean density ρ . The landscape function, which solves Hu(x) = 1, is thus parabolic on each free interval. In the limit $v_n \to +\infty$ ("pieces model"), intervals between impurities decouple and IDoS per unit length is $N(E) = \lim_{L\to\infty} (1/L)\mathcal{N}(E) = \rho/[e^{\pi\rho/\sqrt{E}} - 1]$ [3]. We compare it with Eq. (1). Assuming now ordered positions, $x_1 < x_2 < \cdots$, we have $u(x) = (1/2)(x - x_{n-1})(x_n - x)$ for $x \in [x_{n-1}, x_n]$. We first study its distribution $P(u) = \langle \delta(u - u(x)) \rangle$. The disorder average can be replaced by a spatial average, $P(u) = \rho^2 \int_0^\infty d\ell \, e^{-\rho\ell} \int_0^\ell dx \, \delta[u - x(\ell - x)/2]$, leading to

$$P(u) = 4\rho^2 K_0(\rho \sqrt{8u}),$$
 (2)

where $K_{\nu}(z)$ is the MacDonald function. Denoting by $\theta_H(x)$ the Heaviside function, we can now deduce the estimate $N_{\text{ADJMF}}(E) = (1/\pi) \langle \sqrt{E-1/u} \, \theta_H(E-1/u) \rangle$:

$$N_{\text{ADJMF}}(k^2) = \frac{k}{\pi} \int_{\xi}^{\infty} dt \sqrt{t^2 - \xi^2} K_0(t) \text{ for } \xi = \frac{\rho\sqrt{8}}{k}.$$
 (3)

For $k=\sqrt{E}\gg \rho$, we get $N_{\rm ADJMF}(k^2)\simeq k/\pi$, as it should. For low energy, $k\ll \rho$, one gets $N_{\rm ADJMF}(k^2)\simeq (k/2)\times \exp\{-\sqrt{8}\rho/k\}$, which is a rather poor approximation of the Lifshitz tail $N(k^2)\simeq \rho \exp\{-\pi\rho/k\}$: the coefficient in the exponential is underestimated and the preexponential function incorrect, thus overestimating the IDoS by an exponential factor.

Supersymmetric quantum mechanics.—We consider the Hamiltonian [4] $H=Q^{\dagger}Q$, where $Q=-\partial_x+m(x)$. The analysis is more simple for boundary conditions $\psi(0)=0$ and $Q\psi(L)=0$, leading to the Green's function $G(x,y)=\langle x|H^{-1}|y\rangle=\psi_0(x)\psi_0(y)\int_0^{\min(x,y)}dz\psi_0(z)^{-2}$, where $\psi_0(x)=\exp\{\int_0^xdtm(t)\}$. We study $u(x)=\int_0^Ldy~G(x,y)$, when m(x) is a Gaussian white noise with $\langle m(x)\rangle=\mu g$ and $\langle m(x)m(x')\rangle_c=g~\delta(x-x')$, thus $B(x)=\int_0^xdt~m(t)$ is a Brownian motion (BM) with drift μ [in Ref. [5], the more regular case with m(x) being a random telegraph process

was considered, leading to the same low energy properties]. We have

$$u(x) = e^{B(x)} \left\{ \int_0^x dy \, e^{B(y)} \int_0^y dz \, e^{-2B(z)} + \int_0^x dy \, e^{-2B(y)} \int_x^L dz \, e^{B(z)} \right\} \equiv u_{<}(x) + u_{>}(x).$$
 (4)

The cases $\mu \ge 0$ and $\mu < 0$ are very different: numerical simulations show that the first moments of $\ln u(x)$ grow with x for $\mu \ge 0$ [in particular, $\langle \ln u(x) \rangle \simeq \mu gx + \text{cst}$ for $\mu > 0$, while they remain uniform (apart near boundaries) for $\mu < 0$. We first discuss the term $u_{>}(x) =$ $\int_{x}^{L} dy G(x, y)$ of Eq. (4), which is the product of two independent exponential functionals of the BM $u_>(x) \stackrel{\text{(law)}}{=}$ $(4/g^2)Z_{gx}^{(-\mu)}\tilde{Z}_{g(L-x)/4}^{(-2\mu)}$, where $Z_L^{(\mu)} = \int_0^L dt \, e^{-2\mu t + 2W(t)}$, W(t)being a Wiener process (a normalized BM with no drift). The *n*th moment of $Z_L^{(\mu)}$ is $\sim e^{2n(n-\mu)L}$ [6], thus $\langle u_{>}(x)^n \rangle \sim \exp\{\frac{1}{2}n^2g(L+3x) + n\mu g(L+x)\}$, which suggests a log-normal tail. For $\mu \ge 0$, there is no limit law and $u_{>}(x)$ grows exponentially, hence the bound of the landscape approach is useless. For $\mu < 0, 1/Z_{\infty}^{(-\mu)}$ is distributed by a Gamma law [6] and we get the exact distribution of $u_{>}(x)$ for $x \& L - x \to \infty$:

$$P_{>}(u) = \frac{2g^{-3|\mu|}u^{-1-3|\mu|/2}}{\Gamma(|\mu|)\Gamma(2|\mu|)} K_{|\mu|} \left(\frac{2}{g\sqrt{u}}\right) \underset{u\to\infty}{\sim} u^{-1-|\mu|}.$$
 (5)

 $u_<(x) = \int_0^x dy \, G(x,y)$ should have the same statistical properties as confirmed numerically. Although $u_>(x)$ and $u_<(x)$ are correlated, the distribution of their sum is expected to present the same power law tail $P(u) \sim u^{-1-|\mu|}$, what we checked numerically.

We now apply Eq. (1): for $\mu \ge 0$, u(x) has not limit law when x and $L-x\to\infty$ and the distribution of W=1/u(x) converges to $\delta(W)$, hence $N_{\text{ADJMF}}(E)=\sqrt{E}/\pi$. For $\mu<0$, we get $N_{\text{ADJMF}}(E)=(1/\pi)\int_{1/E}^\infty du P(u)\times \sqrt{E-1/u}\sim E^{|\mu|+1/2}$ for $E\to 0$, while the exact IDoS behaves as $N(E)\sim E^{|\mu|}$ [7]. Hence, Eq. (1) predicts a power law with an incorrect exponent, i.e., underestimates the IDoS.

For boundary conditions $\psi(0) = \psi(L) = 0$, we have also obtained $P(u) \sim u^{-1-|\mu|}$ and $N_{\rm ADJMF}(E) \sim E^{|\mu|+1/2}$, independently of the sign of μ in this case.

Alain Comtet[®] and Christophe Texier[®] LPTMS, Université Paris-Saclay, CNRS F-91405 Orsay, France

Received 5 January 2020; accepted 1 May 2020; published 28 May 2020

DOI: 10.1103/PhysRevLett.124.219701

- D. N. Arnold, G. David, D. Jerison, S. Mayboroda, and M. Filoche, Phys. Rev. Lett. 116, 056602 (2016).
- [2] M. Filoche and S. Mayboroda, Proc. Natl. Acad. Sci. U.S.A. 109, 14761 (2012).
- [3] Yu. A. Bychkov and A. M. Dykhne, Pis'ma Zh. Eksp. Teor. Fiz. 3, 313 (1966); J. M. Luttinger and H. K. Sy, Phys. Rev. A 7, 701 (1973); C. Texier and C. Hagendorf, Europhys. Lett. 86, 37011 (2009).
- [4] A. Comtet and C. Texier, in *Supersymmetry and Integrable Models*, edited by H. Aratyn, T. D. Imbo, W. Y. Keung, and
- U. Sukhatme, Lecture Notes in Physics Vol. 502 (Springer, Berlin, Heidelberg, 1998), pp. 313–328, https://link.springer.com/chapter/10.1007/BFb0105327.
- [5] A. Comtet, J. Desbois, and C. Monthus, Ann. Phys. (N.Y.) 239, 312 (1995).
- [6] C. Monthus and A. Comtet, J. Phys. I (France) 4, 635 (1994);
 A. Comtet, C. Monthus, and M. Yor, J. Appl. Probab. 35, 255 (1998).
- [7] J.-P. Bouchaud, A. Comtet, A. Georges, and P. Le Doussal, Ann. Phys. (N.Y.) **201**, 285 (1990).