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Comment on “Effective Confining Potential of
Quantum States in Disordered Media”

In the Letter [1], the inverse of the landscape function
u(x) introduced in Ref. [2] was shown to play the role of an
effective potential. This leads to the following estimation of
the integrated density of states (IDoS), in one dimension,

N apive(E) = 1/( >1/E dx\/E — 1/u(x). (1)

”M.X

We consider here two disordered models for which we
obtain the distribution of u(x) and argue that the precise
spectral singularities are not reproduced by Eq. (1).

Pieces model—We  consider the Schrodinger
Hamiltonian H = —d*/dx* + ", v,8(x — x,,), where the
positions of the & potentials are independently and uni-
formly distributed on [0,L] with mean density p. The
landscape function, which solves Hu(x) =1, is thus
parabolic on each free interval. In the limit v, — +o0
(“pieces model”), intervals between impurities decouple
and IDoS per unit length is N(E) = lim; _,(1/L)N(E) =
p/[e””/‘/f — 1] [3]. We compare it with Eq. (1). Assuming
now ordered positions, x; < x, < ---, we have u(x) =
(1/2)(x = x,-1)(x, —x) for x € [x,_;,x,]. We first
study its distribution P(u) = (6(u — u(x))). The disorder
average can be replaced by a spatial average, P(u) =
p* [ dte™” [¢ dxS[u— x(¢ — x)/2], leading to

P(u) = 49% Kopv/80), 2)

where K,(z) is the MacDonald function. Denoting by
Oy (x) the Heaviside function, we can now deduce the

1/77-' \/ —l/ueH —l/u
NADJMF(kz):S/OOdtV ?—EK,(1) foré—p\/_ (3)

¢

estimate N ADJMF

For k = VE > p, we get N apymr(k?) ~ k/z, as it should.
For low energy, k < p, one gets Napywmr(k?) = (k/2) x
exp{—+v/8p/k}, which is a rather poor approximation of the
Lifshitz tail N(k?) ~ pexp{—np/k}: the coefficient in the
exponential is underestimated and the preexponential
function incorrect, thus overestimating the IDoS by an
exponential factor.

Supersymmetric quantum mechanics.—We consider the
Hamiltonian [4] H = QTQ, where Q = =0, + m(x). The
analysis is more simple for boundary conditions y(0) = 0
and Qw(L) = 0, leading to the Green’s function G(x,y)=
(el H ) =y (wo(y) fo ) dayrg(2) 2, where yo (x) =
exp{ [ drm(t)}. We study u(x) = [&dyG(x,y), when
m(x) is a Gaussian white noise with (m(x)) = ug and
(m(x)m(x')), = g6(x — x'), thus B(x) = [{drm(t) is a
Brownian motion (BM) with drift u [in Ref. [5], the more
regular case with m(x) being a random telegraph process
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was considered, leading to the same low energy properties].
We have

u(x):eB(">{/xdye / dz e 28)
0 0

X L
+/0 dye‘ZB(W/ dzeB(Z)}Eu<(x)+u>(x). (4)

The cases ¢ >0 and p < 0 are very different: numerical
simulations show that the first moments of Inu(x) grow
with x for u >0 [in particular, (Inu(x)) =~ pugx -+ cst
for y > 0], while they remain uniform (apart near bounda-
ries) for p <0. We first discuss the term u. (x) =
JEdyG(x,y) of Eq. (4), which is the product of two

independent exponential functionals of the BM u. (x )@V )

@/ P22, = [Fdre=m V0 w(r)

being a Wiener process (a normalized BM with no
drift). The nth moment of ZV" is ~e>'"=#L [6], thus
(us (x)") ~ exp{3n*g(L + 3x) + nug(L + x)}, which sug-
gests a log-normal tail. For ¢ > 0, there is no limit law and
u- (x) grows exponentially, hence the bound of the land-
scape approach is useless. For u < 0, 1/ ZEX,_” ) is distributed
by a Gamma law [6] and we get the exact distribution of
u- (x) forx & L —x — oo:

) _29—3\/4|u—1—3|/4|/2 2 o,
P00 = D '*'(Wﬁ)m ®)

u_(x) = [§dyG(x,y) should have the same statistical
properties as confirmed numerically. Although u. (x)
and u_(x) are correlated, the distribution of their sum is
expected to present the same power law tail P(u) ~ u~"~¥,
what we checked numerically.

We now apply Eq. (1): for u > 0, u(x) has not limit law
when x and L —x — oo and the distribution of W =
1/u(x) converges to 5(W), hence Napwr(E) = VE/x.
For u <0, we get Napme(E) = (1/7) 3z duP(u) x
VE—1/u~ EW+1/2 for E — 0, while the exact IDoS
behaves as N(E) ~ E [7]. Hence, Eq. (1) predicts a
power law with an incorrect exponent, i.e., underestimates
the IDoS.

For boundary conditions y(0)
also obtained P(u)~u~'"¥ and Napmp(E)
independently of the sign of u in this case.

where Z

=y(L) =0, we have
~ ElW+1/2
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