
 

Comment on “Effective Confining Potential of
Quantum States in Disordered Media”

In the Letter [1], the inverse of the landscape function
uðxÞ introduced in Ref. [2] was shown to play the role of an
effective potential. This leads to the following estimation of
the integrated density of states (IDoS), in one dimension,

N ADJMFðEÞ ¼
1

π

Z
uðxÞ>1=E

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − 1=uðxÞ

p
: ð1Þ

We consider here two disordered models for which we
obtain the distribution of uðxÞ and argue that the precise
spectral singularities are not reproduced by Eq. (1).
Pieces model.—We consider the Schrödinger

Hamiltonian H ¼ −d2=dx2 þP
n vnδðx − xnÞ, where the

positions of the δ potentials are independently and uni-
formly distributed on ½0; L� with mean density ρ. The
landscape function, which solves HuðxÞ ¼ 1, is thus
parabolic on each free interval. In the limit vn → þ∞
(“pieces model”), intervals between impurities decouple
and IDoS per unit length is NðEÞ ¼ limL→∞ð1=LÞN ðEÞ ¼
ρ=½eπρ=

ffiffiffi
E

p
− 1� [3]. We compare it with Eq. (1). Assuming

now ordered positions, x1 < x2 < � � �, we have uðxÞ ¼
ð1=2Þðx − xn−1Þðxn − xÞ for x ∈ ½xn−1; xn�. We first
study its distribution PðuÞ ¼ hδðu − uðxÞÞi. The disorder
average can be replaced by a spatial average, PðuÞ ¼
ρ2

R
∞
0 dle−ρl

R
l
0 dx δ½u − xðl − xÞ=2�, leading to

PðuÞ ¼ 4ρ2K0ðρ
ffiffiffiffiffiffi
8u

p
Þ; ð2Þ

where KνðzÞ is the MacDonald function. Denoting by
θHðxÞ the Heaviside function, we can now deduce the
estimate NADJMFðEÞ ¼ ð1=πÞh ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E − 1=u
p

θHðE − 1=uÞi:

NADJMFðk2Þ¼
k
π

Z
∞

ξ
dt

ffiffiffiffiffiffiffiffiffiffiffiffi
t2−ξ2

p
K0ðtÞ for ξ¼ρ

ffiffiffi
8

p

k
: ð3Þ

For k ¼ ffiffiffiffi
E

p
≫ ρ, we get NADJMFðk2Þ ≃ k=π, as it should.

For low energy, k ≪ ρ, one gets NADJMFðk2Þ ≃ ðk=2Þ×
expf− ffiffiffi

8
p

ρ=kg, which is a rather poor approximation of the
Lifshitz tail Nðk2Þ ≃ ρ expf−πρ=kg: the coefficient in the
exponential is underestimated and the preexponential
function incorrect, thus overestimating the IDoS by an
exponential factor.
Supersymmetric quantum mechanics.—We consider the

Hamiltonian [4] H ¼ Q†Q, where Q ¼ −∂x þmðxÞ. The
analysis is more simple for boundary conditions ψð0Þ ¼ 0
and QψðLÞ ¼ 0, leading to the Green’s function Gðx;yÞ¼
hxjH−1jyi¼ψ0ðxÞψ0ðyÞ

Rminðx;yÞ
0 dzψ0ðzÞ−2, where ψ0ðxÞ ¼

expfR x
0 dtmðtÞg. We study uðxÞ ¼ R

L
0 dyGðx; yÞ, when

mðxÞ is a Gaussian white noise with hmðxÞi ¼ μg and
hmðxÞmðx0Þic ¼ g δðx − x0Þ, thus BðxÞ ¼ R

x
0 dtmðtÞ is a

Brownian motion (BM) with drift μ [in Ref. [5], the more
regular case with mðxÞ being a random telegraph process

was considered, leading to the same low energy properties].
We have

uðxÞ¼ eBðxÞ
�Z

x

0

dyeBðyÞ
Z

y

0

dze−2BðzÞ

þ
Z

x

0

dye−2BðyÞ
Z

L

x
dzeBðzÞ

�
≡u<ðxÞþu>ðxÞ: ð4Þ

The cases μ ≥ 0 and μ < 0 are very different: numerical
simulations show that the first moments of ln uðxÞ grow
with x for μ ≥ 0 [in particular, hln uðxÞi ≃ μgxþ cst
for μ > 0], while they remain uniform (apart near bounda-
ries) for μ < 0. We first discuss the term u>ðxÞ ¼R
L
x dyGðx; yÞ of Eq. (4), which is the product of two

independent exponential functionals of the BM u>ðxÞ ¼ðlawÞ
ð4=g2ÞZð−μÞ

gx Z̃ð−2μÞ
gðL−xÞ=4, where ZðμÞ

L ¼R
L
0 dte−2μtþ2WðtÞ, WðtÞ

being a Wiener process (a normalized BM with no

drift). The nth moment of ZðμÞ
L is ∼e2nðn−μÞL [6], thus

hu>ðxÞni ∼ expf1
2
n2gðLþ 3xÞ þ nμgðLþ xÞg, which sug-

gests a log-normal tail. For μ ≥ 0, there is no limit law and
u>ðxÞ grows exponentially, hence the bound of the land-

scape approach is useless. For μ < 0, 1=Zð−μÞ
∞ is distributed

by a Gamma law [6] and we get the exact distribution of
u>ðxÞ for x & L − x → ∞:

P>ðuÞ ¼
2g−3jμju−1−3jμj=2

ΓðjμjÞΓð2jμjÞ Kjμj

�
2

g
ffiffiffi
u

p
�

∼
u→∞

u−1−jμj: ð5Þ

u<ðxÞ ¼
R
x
0 dyGðx; yÞ should have the same statistical

properties as confirmed numerically. Although u>ðxÞ
and u<ðxÞ are correlated, the distribution of their sum is
expected to present the same power law tail PðuÞ ∼ u−1−jμj,
what we checked numerically.
We now apply Eq. (1): for μ ≥ 0, uðxÞ has not limit law

when x and L − x → ∞ and the distribution of W ¼
1=uðxÞ converges to δðWÞ, hence NADJMFðEÞ ¼

ffiffiffiffi
E

p
=π.

For μ < 0, we get NADJMFðEÞ ¼ ð1=πÞ R∞
1=E duPðuÞ×ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E − 1=u
p

∼ Ejμjþ1=2 for E → 0, while the exact IDoS
behaves as NðEÞ ∼ Ejμj [7]. Hence, Eq. (1) predicts a
power law with an incorrect exponent, i.e., underestimates
the IDoS.
For boundary conditions ψð0Þ ¼ ψðLÞ ¼ 0, we have

also obtained PðuÞ ∼ u−1−jμj and NADJMFðEÞ ∼ Ejμjþ1=2,
independently of the sign of μ in this case.
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