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The higher-order interactions of complex systems, such as the brain, are captured by their simplicial
complex structure and have a significant effect on dynamics. However, the existing dynamical models
defined on simplicial complexes make the strong assumption that the dynamics resides exclusively on the
nodes. Here we formulate the higher-order Kuramoto model which describes the interactions between
oscillators placed not only on nodes but also on links, triangles, and so on. We show that higher-order
Kuramoto dynamics can lead to an explosive synchronization transition by using an adaptive coupling
dependent on the solenoidal and the irrotational component of the dynamics.
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From the brain [1–5] to social interactions [6–9] and
complexmaterials [10,11], a vast number of complex systems
have the underlying topology of simplicial complexes
[12–14]. Simplicial complexes are topological structures
formed by simplices of different dimension such as nodes,
links, triangles, tetrahedra, and so on, and capture the many-
body interactions between the elements of an interacting
complex system. In the last years, simplicial complex model-
ing has attracted significant attention [15–18] revealing the
fundamental mechanisms determining emergent network
geometry [19] and the interplay between network geometry
and degree correlations [16]. Modeling complex systems
using simplicial complexes allows for the very fertile per-
spective of considering the role that higher-order interactions
have on dynamical processes. For instance, recent works
[6–9,20–24] on simplicial complex dynamics, including
works on simplicial complex synchronization [21–24], reveal
that the topology and geometry of the simplicial complexes
and their many-body interactions induce cooperative phe-
nomena that cannotbe found inpairwise interactionnetworks.
In the last years, explosive synchronization [25,26] has

been attracting increasing scientific interest. Different
pathways to explosive synchronization have been explored
in the framework of the Kuramoto dynamics of single and
multilayer networks. These notably include correlating the
intrinsic frequency of the nodes to their degree [27] or
modulating the coupling between different oscillators
adaptively using the local order parameter in single net-
works and in multiplex networks [28,29]. An outstanding

open question is to establish the conditions that allow
explosive synchronization on simplicial complexes.
Among the papers investigating synchonization dynam-

ics beyond pairwise interactions [30,31], recent works
[22,32] have proposed a many-body Kuramoto model
where the phases associated with the nodes of the network
can be coupled in triplets or quadruplets if the correspond-
ing nodes share a triangle or a tetrahedron. Interestingly, in
this context it has been shown [22] that the many-body
Kuramoto dynamics can lead to explosive, i.e., discontinu-
ous phase transitions. However this work, together with the
vast majority of works that address the study of dynamics
on simplicial complexes has the limitation that they
associate a dynamic variable exclusively with nodes of a
network. Here we are interested in a much more general
scenario where the dynamics can be associated with the
faces of dimension n ≥ 0 of a simplicial complex. Indeed,
dynamical processes might not just reside on nodes, instead
they might be related directly to dynamics defined on
higher-dimensional simplices leading to the definition of
topological dynamical signals [33]. For instance, each link
can be associated with a flux. Flow dynamics is relevant for
biological transport networks including fungal networks
[34], tree vascular networks [35], microvascular networks
[36], or hemodynamic in the mammalian cortex [37], where
there is some evidence that the dynamics can spontaneously
give rise to oscillatory currents. Flow signals can also be
used to analyze functional magnetic resonance image
(fMRI) [38] and to study blood flow between different
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regions of the brain. More in general, the simplicial
complex can be considered as a representation of inter-
actions of different order. For instance, for any given
networked structure, the line-graph construction [39,40]
allows us to map links into nodes of the line graph, so that a
dynamics defined on the links of a simplicial complex can
be mapped on a node dynamics of its line graph. However,
the original simplicial complex provides a definition of the
many-body interactions solidly based on topology.
In this Letter, we formulate a higher-order Kuramoto

dynamics where the dynamical variables are coupled
oscillators associated with higher-dimensional simplices
such as nodes, links, triangles, and so on. By using Hodge
decomposition, we show that the dynamics defined on a
n-dimensional simplex can be projected on the dynamics
defined on (nþ 1) and (n − 1)-dimensional simplices. We
propose a simple higher-order Kuramoto dynamics in
which these two projected dynamics are decoupled and
display a continuous phase transition. We then formulate
the explosive higher-order Kuramoto dynamics which
adaptively couples the two projected dynamics with a
mechanism inspired by Ref. [28], showing that in this
case the explosive higher-order Kuramoto dynamics leads
to a discontinuous synchronization transition. This implies,
for instance, that a dynamics defined on links can induce a
simultaneous explosive synchronization on the dynamics
projected on nodes and triangles. Therefore, our work
elucidates an important mechanism leading to higher-order
explosive Kuramoto dynamics.
Definition of simplicial complexes.—Simplicial com-

plexes represent higher-order networks, which include
interactions between two or more nodes described by
simplices. A node is a zero-dimensional simplex, a link
is a one-dimensional simplex, a triangle is a two-
dimensional simplex, a tetrahedron is a three-dimensional
simplex, and so on. The faces of a simplex α of dimension n
are all the simplices α0 of dimension n0 < n that can be
constructed by taking proper subsets of the set of all the
nodes forming the simplex α. A simplicial complex K is
formed by a set of simplices that satisfy the condition of
closure (given a simplex belonging to the simplicial
complex, all its faces also belong to the simplicial com-
plex). In this work, we will use the configuration model
[16] of simplicial complexes, which naturally generalizes
the configuration model of networks (see Supplemental
Material [41] for other topologies). In particular, the
d-dimensional configuration model generates simplicial
complexes formed by gluing d-dimensional simplices
such that every node is incident to a given number of
d-dimensional simplices called its generalized degree.
In topology, simplices have also an orientation. An n-

dimensional oriented simplex α is a set of ordered nþ 1
nodes

α ¼ ½i0; i1;…; in�: ð1Þ

For instance, a link α ¼ ½i; j� has opposite sign of the link
½j; i�, i.e., ½i; j� ¼ −½j; i�. Similarly to each higher-order
simplex we associate an orientation such that

½i0; i1;…; in� ¼ ð−1ÞσðπÞ½iπð0Þ; iπð1Þ;…; iπðnÞ�; ð2Þ

where σðπÞ indicates the parity of the permutation π. Here
we consider the orientation induced by the labeling of its
nodes; i.e., for every simplex in a simplicial complex, we
give positive orientation as the one provided by the
increasing list of node labels (see Fig. 1).
In topology [33,45–47], the n-chains Cn are the elements

of a free Abelian group with basis the n-dimensional
simplices of a simplicial complex. The boundary map is a
linear map ∂n: Cn → Cn−1 defined by its action on each
simplex. Specifically, the boundary map maps every
n-dimensional simplex α to a linear combination of
the (n − 1)-dimensional oriented faces at its boundary
given by

∂n½i0; i1…; in� ¼
Xn

p¼0

ð−1Þp½i0; i1;…; ip−1; ipþ1;…; in�:

The boundary map satisfies the important property that
∂n−1∂n ¼ 0, that is usually expressed by saying that the
boundary of a boundary is null (see Supplemental Material
[41]). Given a simplicial complex with N½n� n-dimensional
simplices, the boundary map ∂n can be described using the
N½n−1� × N½n� incidence matrix B½n� (see Supplemental
Material [41]). For instance, in Fig. 1 we show an example
of a simplicial complex formed by the set of nodes
f½1�; ½2�; ½3�; ½4�g, the set of links f½1; 2�; ½1; 3�; ½2; 3�;
½3; 4�g, and the set of triangles f½1; 2; 3�g. The incidence
matrices [33,45–47] of this simplicial complex are
given by

B½1� ¼

½1;2� ½1;3� ½2;3� ½3;4�
½1� −1 −1 0 0

½2� 1 0 −1 0

½3� 0 1 1 −1
½4� 0 0 0 1

B½2� ¼

½1;2;3�
½1;2� 1

½1;3� −1
½2;3� 1

½3;4� 0

:

FIG. 1. An example of a small simplicial complex with the
orientation of the simplices induced by the labeling of the nodes.
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Higher-order Laplacians.—The graph Laplacian is
widely used to study dynamical processes defined on the
nodes of a network. It can be expressed in terms of the
boundary matrix B½1� as

L½0� ¼ B½1�B⊤
½1�: ð3Þ

The higher-order Laplacian L½n� [33,45–47], with n > 0,
generalizes the graph Laplacian by describing diffusion
taking place on n-dimensional faces. The nth Laplacian
L½n� is an N½n� × N½n� matrix given by

L½n� ¼ B⊤
½n�B½n� þ B½nþ1�B⊤

½nþ1�: ð4Þ

The spectral properties of the higher-order Laplacian can be
proven to be independent of the orientation of the simplices
as long as the orientation is induced by a labeling of the
nodes. The main property of the higher-order Laplacian is
that the degeneracy of the zero eigenvalue ofL½n� is equal to
the Betti number βn, and that its corresponding eigenvec-
tors localize around the corresponding n-dimensional
cavities of the simplicial complex.
The higher-order Laplacians have notable spectral prop-

erties induced by the topological properties of the boundary
map [33]. In fact, given that ∂n−1∂n ¼ 0, we have
B½n−1�B½n� ¼ 0 and, similarly, B⊤

½n�B
⊤
½n−1� ¼ 0. Therefore

the eigenvectors associated with the non-null eigenvalues

of L½up�
½n� ¼ B½nþ1�B⊤

½nþ1� are orthogonal to the eigenvectors

associated with the non-null eigenvalues of

L½down�
½n� ¼ B⊤

½n�B½n�. It follows that the non-null eigenvalues

of L½n� are either the non-null eigenvalues of L½up�
½n� or the

non-null eigenvalues of L½down�
½n� . This property of the

higher-order Laplacian can be exploited to prove that every
vector x½n� defined on n-dimensional simplices can be
decomposed according to the Hodge decomposition [33] as

x½n� ¼ xH
½n� þB⊤

½n�z½n−1� þB½nþ1�z½nþ1�; ð5Þ

where xH
½n� is the harmonic component that satisfies

B⊤
½nþ1�x

H
½n� ¼ 0, B½n�xH

½n� ¼ 0, the term B⊤
½n�z½n−1� is the

irrotational component as we have B⊤
½nþ1�B

⊤
½n�z½n−1� ¼ 0,

and the third term B½nþ1�z½nþ1� is the solenoidal component
as we have B½n�B½nþ1�z½nþ1� ¼ 0.
Higher-order Kuramoto dynamics.—The Kuramoto

model [48] is a dynamical model for the vector θ whose
elements are the phases θi associated with the nodes of the
simplicial complex. Each oscillator i has an internal
frequency ωi and is coupled pairwise to the oscillator of
the connected nodes by the coupling constant σ.
Interestingly, the Kuramoto dynamics can be interpreted
as a dynamics defined on the nodes of a simplicial complex,

i.e., simplices of dimension n ¼ 0, indicated with label
i ¼ 1; 2;…; N½0�, and it can be expressed in terms of the
incidence matrix B½1� (see Supplemental Material [41]) as

_θ ¼ ω − σB½1� sinB⊤
½1�θ; ð6Þ

where here and in the following, sinx indicates the column
vector where the sine function is taken elementwise, and ω
is the vector of internal frequencies ωi associated with the
nodes of the simplicial complex.
Here our goal is to extend the Kuramoto dynamics to

describe synchronization among dynamical phases θα
associated with each simplex α of dimension n > 0, i.e.,
links (for n ¼ 1Þ or even higher-dimensional simplices. We
assume that these dynamical signals are phases that
oscillate with some internal frequency, and they can be
coupled by higher-order interactions. The natural way to
choose the coupling between n-dimensional phases is
suggested by the generalization of the Kuramoto dynamics
using the higher-order incidence matrices

_θ ¼ ω − σB½nþ1� sinB⊤
½nþ1�θ − σB⊤

½n� sinB½n�θ; ð7Þ

where θ indicates the vector of phases θα and where ω is
the vector of intrinsic frequencies ωα associated with
each n-dimensional simplex α. Each internal frequency
ωα is drawn from a normal distribution with mean Ω and
variance 1, i.e., ω ∼N ðΩ; 1Þ. The higher-order Kuramoto
dynamics describes a dynamics of phases associated with
simplices of dimension n as links (n ¼ 1), triangles
(n ¼ 2), and so on (see Supplemental Material [41]).
An important question to ask is whether the dynamics

associated with n-dimensional simplices induces a dynam-
ics on lower- or higher-dimensional simplices. For instance,
if we have a Kuramoto dynamics defined on links, what is
the effect of this dynamics on nodes and triangles? It turns
out that there is a simple way to project the dynamics
defined on links into dynamics defined on nodes and
triangles suggested by topology. More in general, we
can project the dynamics defined on n simplices to the
dynamics defined on simplices of dimension n − 1 and
nþ 1 by using the higher-order incidence matrices. To this
end, let us indicate with θ½þ� the vector of N½nþ1� phases
associated with each nþ 1 simplex of the simplicial
complex. This vector describes the projection of the
dynamics on simplices of dimension nþ 1. Similarly, let
us indicate with θ½−� the vector of N½n−1� phases associated
with each n − 1 simplex of the simplicial complex. This
vector represents the projection of the dynamics on
simplices of dimension n − 1. Topological considerations
suggest the physical meaning of these projecting as θ½þ� and
θ½−� are, respectively, as the “discrete curl” and “discrete
divergence” of θ, i.e.,
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θ½þ� ¼ B⊤
½nþ1�θ;

θ½−� ¼ B½n�θ: ð8Þ

Using the Hodge decomposition, it is easy to show that θ½þ�
depends only on the solenoidal component of the dynamics
defined on n-dimensional phases, whereas θ½−� depends
only on the irrotational component. Since we have that
B⊤

½n�B
⊤
½n−1� ¼ 0 and B½n−1�B½n� ¼ 0, if θ obeys the higher-

Kuramoto dynamics, then the projected dynamical varia-
bles θ½þ� and θ½−� evolve independently according to

_θ½þ� ¼ B⊤
½nþ1�ω − σL½down�

½nþ1� sinðθ½þ�Þ;
_θ½−� ¼ B½n�ω − σL½up�

½n−1� sinðθ½−�Þ: ð9Þ

Therefore, the dynamics defined on n-dimensional
simplices can naturally be decoupled into two noninteract-
ing dynamics acting on (n − 1) and on (nþ 1)-
dimensional simplices. The two order parameters for these

two independent dynamics are R½þ� ¼ jPN½nþ1�
α¼1 eiθ

½þ�
α j=

N½nþ1� and R½−� ¼ jPN½n−1�
α¼1 eiθ

½−�
α j=N½n−1� respectively.

In order to investigate the properties of the dynamics
defined on n-dimensional simplices, we can consider the

standard order parameter R given by R ¼ jPN½n�
α¼1 e

iθα j=N½n�
and two additional order parameters R½1� ¼
jPN½n�

α¼1 e
iy½1�α j=N½n� and R½2� ¼ jPN½n�

α¼1 e
iy½2�α j=N½n�, where

y½1� ¼ L½up�
½n� θ ¼ L½up�

½n� B½nþ1�z½nþ1� depends only on the

solenoidal component of the dynamics on n-dimensional

simplices, and y½2� ¼ L½down�
½n� θ ¼ L½down�

½n� B⊤
½n�z½n−1� depends

only on the irrotational component of the dynamics on
n-dimensional simplices.
We have simulated the higher-order (n ¼ 1) Kuramoto

dynamics on the three-dimensional simplicial complexes
produced by the configuration model with power-law
generalized degree distribution of the nodes. These sim-
plicial complexes have Betti numbers β1 > 0, β2 ¼ 0. We
observe that the projected dynamics on the two-dimen-
sional simplices and the zero-dimensional simplices dis-
play a continuous synchronization transition (see Fig. 2).
When we investigate the three order parameters for the
dynamics defined on n-dimensional simplices, we observe
that R does not capture the collective behavior of the phases
due to the fact that the harmonic component of their
dynamics is not coupled by the higher-order Kuramoto
dynamics. However, the order parameters R½1� and R½2� are
sensible to the synchronization of the solenoidal and
irrotational component of the dynamics of the phases
(see in Fig. 3). This suggests that this ordering in physical
system can go unnoticed if the correct order parameters are
not applied to the signal. A phenomenological analytical
approach can show that while the projection of the phases

on the harmonic modes are decoupled, θ½þ� and θ½−� have a
continuous synchronization transition at σc ¼ 0 (see
Supplemental Material [41]). The nature of the phase
transition does not change if we consider simplicial
complexes with Poisson generalized degree distribution
of the nodes and can be explained by an analytical
framework (see Supplemental Material [41]).
Explosive higher-order Kuramoto dynamics.—In order

to explore whether it is possible to enforce an explosive
phase transition, we include a coupling between the
equations determining the dynamics of θ½þ� and θ½−�. The
way we coupled these two independent dynamics is
inspired by the coupling of the dynamics of multiplex
Kuramoto dynamics in Ref. [28]. However, while in the
explosive multiplex Kuramoto dynamics the coupling
between the phases in one layer is modulated by the local
order parameter of each node in the other layer, here we
consider a modulation of the coupling between the phases
θ½þ� and θ½−� given, respectively, by the global order
parameters R½−� and R½þ�. This choice is driven by the fact
that the (nþ 1)-dimensional faces are not in a one-to-one
relation with the (n − 1)-dimensional faces. Given these
considerations, we propose the following explosive higher-
order Kuramoto dynamics:

_θ ¼ ω − σR½−�B½nþ1� sinB⊤
½nþ1�θ

− σR½þ�B⊤
½n� sinB½n�θ. ð10Þ

This dynamics can be projected on the dynamics of (nþ 1)
and (n − 1)-dimensional simplices producing now two
equations coupled by the global order parameters R½þ�

and R½−�:

σσ

FIG. 2. The projection of the higher-order (n ¼ 1) Kuramoto
dynamics on (n−1)-dimensional faces and (nþ 1)-dimensional
faces is investigated by plotting the order parameters R½þ� (left
panel) and R½−� (right panel), both for the simple (blue circles)
and explosive (red squares) dynamics. Here both the simple
and the explosive higher-order Kuramoto model have Ω ¼ 2
and are defined on a configuration model of N½0� ¼ 1000

nodes, N½1� ¼5299 links, and N½2� ¼4147 triangles with gen-
eralized degree of the nodes that is power-law distributed with
power-law exponent γ ¼ 2.8.
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_θ½þ� ¼ B⊤
½nþ1�ω − σR½−�L½down�

½nþ1� sinðθ½þ�Þ;
_θ½−� ¼ B½n�ω − σR½þ�L½up�

½n� sinðθ½−�Þ: ð11Þ

We have simulated the explosive higher-order Kuramoto
dynamics on simplices of dimension n ¼ 1 on the con-
figuration model of simplicial complexes with power-law
distribution of generalized degrees.
A discontinuous phase transition emerges in R½þ� and

R½−� (see Fig. 2). This transition is also reflected on the
irrotational and solenoidal components of the dynamics
on the n-dimensional phases captured by the order param-
eters R½1� and R½2�, while due to the presence of the
uncoupled harmonic component R remains close to zero
(see Fig. 3). The nature of the phase transition does not
change significantly if we consider simplicial complexes
with Poisson generalized degree distribution (see
Supplemental Material [41]). Our analytical framework
(see Supplemental Material [41]) explains the physics
behind this discontinuous phase transition.
Conclusions.—We have introduced the higher-order

Kuramoto dynamics designed to characterize the coupling
between phases associated with higher-dimensional sim-
plices, such as links, triangles, and so on. This framework
has allowed us to define a topologically projected dynamics
on faces of dimension n − 1 and nþ 1, which obey a
dynamics of coupled oscillators. We have considered two
versions of the higher-order Kuramoto dynamics, the
simple and the explosive higher-order Kuramoto dynamics.
We have found that the simple higher-order Kuramoto
dynamics displays continuous phase transitions for the
projected dynamics defined on nþ 1 and n − 1 faces.
Interestingly, however, when we introduced a coupling
between the dynamics projected on the nþ 1 and n − 1
dynamical phases, as in the explosive higher-order
Kuramoto dynamics, the system then displayed an explo-
sive synchronization transition. This work opens innovative
perspectives on characterizing the Kuramoto dynamics on
higher-dimensional simplices, and it shows that a higher-
order synchronization dynamics defined on n-dimensional
simplices (as, for example, links) can induce a simulta-
neous discontinuous transition on its projected dynamics

defined on (n − 1) and (nþ 1)-dimensional simplices (i.e.,
nodes and triangles). In the future, the proposed dynamical
model can be extended in different directions. For instance,
one could explore coupling the dynamics of faces of
different dimensions or other mechanisms leading to
explosive synchronization.
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