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Transport properties of dense fluids are fundamentally challenging, because the powerful approaches
of equilibrium statistical physics cannot be applied. Polar fluids compound this problem, because the
long-range interactions preclude the use of a simple effective diameter approach based solely on hard
spheres. Here, we develop a kinetic theory for dipolar hard-sphere fluids that is valid up to high density. We
derive a mathematical approximation for the radial distribution function at contact directly from the
equation of state, and use it to obtain the shear viscosity. We also perform molecular-dynamics simulations
of this system and extract the shear viscosity numerically. The theoretical results compare favorably to the

simulations.
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Transport properties of dense fluids are fundamentally
challenging, because it is a many-body problem out of
equilibrium. A statistical approach is needed, but the
powerful approaches of equilibrium statistical physics
cannot be applied. Current theoretical approaches to trans-
port in dense fluids are based on hard spheres and Enskog’s
heuristic extension of the Boltzmann equation and kinetic
theory of gasses and liquids [1]. The only alternative to this
is to resort to purely computational methods (see, for
example [2-5]). Kinetic theory was heavily developed in
the 1960s and 1970s, but little progress has been made
since. In particular, there is no analytical description of
high-density fluids consisting of anything more compli-
cated than simple hard spheres (HS). This is a fundamental
limitation in our current understanding, but also particu-
larly problematic in practical applications, where kinetic
theory is widely used in combination with empirical
information and effective diameters to predict viscosities
of some nonpolar complex liquids [6,7].

Here, we develop kinetic theory of polar fluids, espe-
cially focusing on the viscosity. Polar fluids are a textbook
example of systems where the hard-sphere approach fails,
because the long-range electrostatic interactions are cap-
tured badly by instantaneous collisions. They are also
ubiquitous in nature, for example in the form of water,
and are increasingly important in applications in biotech-
nology and other fields. The physics of these systems
cannot be described by simple hard spheres with an
effective diameter. Moreover, molecular dynamics (MD)
simulations involving electrostatic interactions are
extremely computationally demanding and anyway cannot
provide the fundamental understanding that is needed.

We choose to focus on the shear viscosity, as it is one
of the most important transport properties of a fluid for
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practical applications. It plays a crucial role in for example
lubrication and pipe flow. The viscosity of polar fluids is
receiving increasing interest in practical applications, for
example as the basis of environmentally friendly lubricants,
which are very promising for low-friction applications, as
demonstrated for instance by the amazing effectiveness
with which water-based synovial fluid lubricates our
joints [8,9].

We derive an analytical kinetic theory for the viscosity
of a simple model for a polar fluid, dipolar hard spheres
(DHS). Our theoretical approach is based around Enskog’s
extension of the Boltzmann equation to high densities
(BEK). In order to incorporate the soft and long-range
electrostatic interactions between the dipoles, we extend
this theory, which is originally based on simple shapes and
simple interactions especially HS at low densities. We do
this by explicitly including the dipole-dipole interaction
into the radial distribution function (RDF). We calculate the
RDF using the method of [10-13] from the Helmholtz free
energy of DHS derived by Elfimova et al. [14]. In order to
verify our theoretical results, we compare them to MD
simulation of dipolar pseudo hard spheres. Our result
can be used in a straightforward manner to also calculate
other transport properties such as thermal conductivity and
diffusion coefficient.

BEK theory centers around the Boltzmann equation and
deals with collision probabilities and collision dynamics.
Boltzmann’s original equation contains a crucial low-
density approximation: the Stoflzahlansatz, which states
that when particles collide they are uncorrelated. Solving
the Boltzmann equation for transport coefficients is non-
trivial, but general solutions were derived by Chapman and
Enskog [15]. The general form of the zero-density viscosity
is found to be
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where Q*(>2) is the collision integral which depends on the
interactions. For HS, Q*(22) = 1. With considerable effort,
zero-density viscosities can also be derived for slightly
more complicated interaction models, such as rough
spheres [15], spherocylinders [16], and hard spheres with
embedded point dipoles (DHS) [17].

At higher density, the equations for collision rates and
dynamics become more complex, in general including
correlated collisions. Enskog devised a heuristic way to
incorporate some correlated collisions at higher densities,
but this approach is currently limited to HS [15] and chains
of hard spheres [18], but not other types of interactions.
Enskog’s approach produces good agreements with simu-
lations of HS and experiments of very simple fluids only for
low- to mid-density ranges and fails at high densities, since
it still does not take into account correlated collisions.
Nevertheless, Enskog’s theory, though still approximate in
nature, has provided a useful theoretical basis for both
understanding and predicting the transport properties of
hydrocarbons with short-range interactions only, including
some molecules with much more complex geometry than
HS [18-20].

In order to obtain theoretical results for the viscosity of
DHS, we start from the Enskog’s theory for a simple dense
fluid. Enskog’s expression for the viscosity is [1,15,21-23]

n=nolg(&)™" + 0.8Vexap + 0.776V2 1p%g(8)], (2)

where V. is the excluded volume of HS, V., =
(2n/3)6®, & = n6’p/6 is the volume fraction, and g(&)
is the RDF at contact. The RDF in is the spherical
component of the pair-distribution function. There are a
number of ways to obtain good approximations for the
RDF at contact of HS, such as from the Carnahan-Starling
equation [24], which gives

gns(§) = (3)

(1-97*

The zero-density limit for viscosity [see Eq. (1)] for some
polar interactions have been obtained. In Ref. [25], the
collision integral for the zero-density viscosity of polar gas
was calculated for the Stockmayer potential. Chung et al.
developed an empirical formula which works well for the
viscosity of real dilute gasses [26].

Our approach for high densities is to develop the radial
distribution function of DHS and apply it to the Enskog
expression. The interaction between two DHS i and j with
diameter o and dipole moments y at distance r is given by a
sum of hard sphere (U%S) and dipolar (UB-) terms:
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with the dipolar coupling constant A = p?/(kzT4reyo?).

In recent years, considerable effort has been made on
development of the theoretical expression for the equilib-
rium properties of DHS [14,27-32]. The Helmbholtz free
energy of DHS can be written relative to that for a regular
HS fluid FHS as

FDHS — FHS + FD, (6)

where FP is the excess free energy due to the electrostatic
interaction between the dipoles. The most common
approaches for dealing with DHS is thermodynamic pertur-
bation theory with a Pade approximation and mean spherical
approximation. However, because these are lower-order
theories with respect to A they do not give accurate results
for low densities and virial coefficients [30,31].

In order to get around this problem, Elfimova et al. [30]
introduced a logarithmic representation of the free energy.
The result converges faster, since the logarithm of a
polynomial is less sensitive to the truncation of the
polynomial. The excess free energy is then written as [14]

FP &
ﬁT =—In [1 + ; n‘llnf”} . (7)

The coefficients /, are obtained from the regular virial
coefficients for DHS. Elfimova et al. [14] keep up to the
fifth virial coefficient, corresponding to n =4 and give
explicit expressions for /;,34. This theory accurately
captures the free energy and compares favorably with
computer simulation for A <4, even at high value of the
particle volume fraction & < 0.5.

We obtain the RDF from the DHS free energy using the
equation of state (EOS) [11,33],

PV U
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where (U,q) is the interaction potential. We apply the
thermodynamic relations P = —(9F /OV)|y r and (Uyy,) =
[0(BF)/Op] to obtain the pressure and internal energy. The
interaction potential is then obtained as
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where J;(1) = (4/i)[0I;(4)/02]. Finally, we find the RDF
at contact

1
9(¢) ~ 1 zZ" -1

Li(A)E+ Ly(A)E + L3(A)E + Ly(2)E*
L+ L(AD)E+ 3L (AME +1L(0)E + 1L (A)E]
(10)

where
Li(2) = Ji(2) = I;(4). (11)

The viscosity is then obtained by substituting this into
Eq. (2). We compare our theoretical results to MD
simulations. The integration algorithms typically used
for MD depend on smooth interaction, and cannot be
applied to instantaneous collisions. This is worsened by the
presence of long-range electrostatic interactions, which
require additional techniques that also depend on smooth
force fields. We circumvent this issue by employing a
pseudo hard sphere model (PHS) introduced by Jover et al.
[34]. The PHS potential is of Mie form where the typical
powers of the LJ potential 12/6 are replaced by 50/49:
50(39) 797 = (9)¥] +e r<igo

r
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Jover et al. verified that this potential accurately captures
the thermodynamics, structures, and dynamics of the HS
system. It produces good results at reduced temperature
T* = (e/kgT) = 2/3. This model has been shown to
accurately describe the fluid-solid equilibrium [35] as well
as the viscosity of HS [36].

We use Gromacs version 5 to integrate the equations of
motion and the PHS potential is implemented as a tabular
form as in Ref. [36]. Our DHS consists of five particles on a
line, as shown in Fig. 1. The central particle has no charge
or mass, but interacts with the central particles of the other
DHS through a PHS potential. Two massless particles of
opposite charges g and —g are at equal distance L,/2 from
the center on either side and give rise to the dipole. There
are also two dummy mass particles of mass m on each side
at distance L,,/2, controlling the moment of inertia. We
use L,/o = 0.224, since the point dipole model has been
found to agree well with the extended dipole model up to
L,/o=0.3[5,37,38]. In our model L,,/o = 0.20

We simulate this system for different dipole moments
corresponding to A =1, 2, 3, 4. Our simulation box
contains N = 1000 DHS particles and N = 6000 for dilute
cases, po < 0.15. All simulations have been carried out at
reduced temperature 7* = 2/3. For each systems with

FIG. 1. Schematic representation of the DHS model. The
central atom with diameter ¢ is connected to two dummy massive
atoms with mass m and two oppositely charged virtual sites with
charges +¢ each at distance L,,.

different A we perform simulations for a range
of densities p* between 0 and 1. In what follows,
all units are dimensionless as ¢* = t[kzT/(c?m)]'/?,
r* =r/o, p* =pc’ =E6/r and P* = Po’/(kgT), u* =
u(kgTo 4ney)™" 2, 4 = w2, n* = no?/(mkgT)'/?, where p
and P denote number density and pressure respectively and
n is viscosity. The reduced volume fraction is £* = zp*/6.
The electrostatic interactions are treated using the particle
mesh Ewald method with cutoff length of 2.66*. Time steps
for simulations is ot* = 0.0011.

We first equilibrate the system and verify the equation of
state (EOS), before moving on to the RDF and viscosity.
Equilibration was performed in the NVT (canonical
ensemble) with the velocity-rescale thermostat for r* =
10° to t* = 6 x 10° depending on the system.

Figure 2 shows the EOS for DHS obtained from current
simulations (blue triangle data), from previous Monte Carlo
simulations [14] (red circle data) and the theoretical
expression of EOS in Ref. [14]. Our MD simulations
correspond well to both.

After equilibration, we run the simulations in the NVT
ensemble for an additional interval of * = 1000 and obtain
the full RDF for each density and 4. The RDF at contact is
given by the maximum values of RDF. Simulation results
of RDF at contact are shown in Fig. 3(a) along with
our theoretical expression Eq. (10), both with ¢ = 1. For
comparison, Fig. 3(b) shows the results obtained by
Rushbrooke et al. using the Pade approximation [39,40].
The new theory developed here describes the simulation
results significantly better and captures the trends relative
to the Carnahan-Starling results.

We continue to run the system in the NVT ensemble for
" =45000 up to * =90000 depending on the system
(for more dilute ones longer time is needed to get enough
collisions). To minimize the influence of the thermostat,
the temperature is controlled using a Berendsen thermostat
with a slow coupling with a characteristic time of r* = 11.
We obtain the shear viscosity of the DHS model using the
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FIG. 2. The equation of state of DHS fluids from current
simulations for A = 1, 2, 3, 4 (triangle data) and from Monte Carlo
simulations by Elfimova et al. [14] (circle data). Solid lines are
the theoretical expression in Ref. [14].

transverse-current autocorrelation function method [41].
More details on our use of this method can be found in [36].

The shear viscosities obtained from the simulations are
shown in Fig. 4(a) for different 1. According to the data,
the relative shear viscosity decreases upon increasing the
dipole moment, whereas it shows an opposite behavior for
higher densities. This is because at lower densities the
dipolar particles form chainlike structure which decreases
the collision rates, and consequently the viscosity. At
high densities strong dipole moments cause the system
to form ordered structures, which have a higher viscosity
(up to infinity) than a noninteracting disordered fluid. In
addition, Enskog theory for hard spheres is known to break
down at higher densities. To visualize the reason for why
the viscosities deviate from the Enskog expressions
for hard spheres without dipoles, we show examples of
snapshots from simulations in Fig. 5. The snapshots are

(a) 20 — (b) 20 - ——
Al 2 &R : =
15 A, 74 15 A A 7=4
2 Theory N Theory
A \ A
A %

FIG. 3. RDF at contact from simulations (data) along with
(a) the RDF at contact from the present work, Eq. (10), and
(b) the RDF obtained from the Pade approximation [39]. In
both plots ¢ = 1.
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FIG. 4. Shear viscosity of DHS from simulations (data points)
fitted to (a) the theory developed in the present work and (b) the
Enskog theory of HS with an effective diameter. The inset in
(a) shows the same data in different scale to include the higher
densities.

for system with 4 = 4 and two different densities £&* = 0.03
and &* = 0.49. Similar structures are reported by simula-
tions for dipolar fluids (and ferromagnetic particles)
[42-46] and also by experiments [47-50].

(@)

FIG. 5. Snapshots of the simulation results for system with
A =4 for two densities £ = 0.03 (a) and &* = 0.49 (b). At low
densities we observe clustering of the dipoles in an otherwise
disordered fluid, while at high densities there is more orienta-
tional structure. These behaviors are a result of the strong
directionality and long-range interactions and have an impact
on the viscosity.
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TABLE 1. The values for the fit parameters, Q*22 and u/u,
obtained from fitting of the simulation data to the DHS theory
(top) as well as Q*22 and ¢,/c obtained from fitting the
simulation data to the Enskog theory for HS (bottom).

Fit parameters for DHS

Q*(2,2) 1/ He

A=1 1.05 1.78
=2 1.11 1.54
A=3 1.13 1.44
=4 1.14 1.37

Fit parameters for HS

Q*(2,2) o./c

A=1 1.06 1.00
A=2 1.25 1.02
A=3 1.74 1.14
A=4 2.21 1.11

We compare the simulation results to the theoretical
results, which are given by Eq. (10) combined with (2)
and (1). Since we do not have the exact low-density limit
for 5, for our system, we introduce Q*%2 as a fit
parameter. We estimate the range of sensible values from
the results of Ref. [25] for the Stockmayer potential with a
point dipole, to be in the range of 1 to 3 corresponding to 4
up to 4 = 5. We use an effective dipole moment y, as a fit
parameter, rather than the hard-sphere diameter. The fit
parameters Q*22) and u,/u are given in Table I. The
obtained values of Q"2 indicates collision integrals
increase by increasing the dipole moments in agreement
with the trends found for the zero-density viscosity of the
Stockmayer potential [25] and values in the expected range.

The only previously available theory for viscosity of
dense fluids is the HS Enskog theory. In order to compare
our theory to this, we fit the simulations data of viscosity to
the Enskog theory for HS, Eq. (2), with the HS RDF given
in Eq. (3). The collision integral Q*(?) is equal to unity for
HS, but this is incorrect for DHS. When Enskog theory for
HS is applied to real molecules this is usually taken into
account by allowing Q*22) to deviate from unity and using
it as a fit parameter, along with the effective diameter o,,
and we do the same here. The results are shown in Fig. 4(b)
as lines. The fit parameters Q*>?) and ¢,/c are given in
Table 1. Figure 4 clearly shows that our theory successfully
describes the viscosity of dense fluids of DHS and captures
qualitative behavior that is not captured by previous HS
theoretical results.

In summary, we have developed a kinetic theory for the
shear viscosity of dense fluids of dipolar hard spheres
(DHS). In our theory, we have included the long-range
electrostatic interactions explicitly. Our theory captures
the main effects of the dipole-dipole interaction on the

viscosity, which were missing from previous theories.
We see from our simulations that the differences between
DHS and HS are mainly due to local structure. At low
densities the DHS viscosity is lower due to clustering of
the particles. At high densities, the DHS show orientational
ordering, leading to stronger interaction and a higher
viscosity. Both of these effects are captured by our theory.
Our theory is in agreement with simulation results for
packing fractions below about 0.35-0.4.

While we have focused on the viscosity, the RDF at
contact is the crucial ingredient for the collision rate and
consequently the density dependence of all nonequilibrium
properties of fluids. Our kinetic theory should therefore
also provide for accurate descriptions of other transport
properties, such as thermal conductivity and diffusion
coefficient. Moreover, the approaches currently in use in
applications, for viscosity as well as other transport
coefficients, are all based on the simple HS results, even
for much more complicated molecules. Besides the funda-
mental understanding of transport in polar fluids, our
theory can thus also lead to significant improvements in
the accuracy of calculations of transport properties in
practical applications.
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