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Computer simulations of the fluid-to-solid phase transition in the hard sphere system were instrumental
for our understanding of crystallization processes. But while colloid experiments and theory have been
predicting the stability of several binary hard sphere crystals for many years, simulations were not
successful to confirm this phenomenon. Here, we report the growth of binary hard sphere crystals
isostructural to Laves phases, AlB2, and NaZn13 in simulation directly from the fluid. We analyze particle
kinetics during Laves phase growth using event-driven molecular dynamics simulations with and without
swap moves that speed up diffusion. The crystallization process transitions from nucleation and growth to
spinodal decomposition already deep within the fluid-solid coexistence regime. Finally, we present packing
fraction–size ratio state diagrams in the vicinity of the stability regions of three binary crystals.
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Introduction.—Hard spheres are arguably one of the
simplest particle model. Their crystallization is a classic
example of a phase transition discovered by computer
simulation [1–3]. A prediction of the model is the sponta-
neous ordering of concentrated suspensions of nearly hard
colloidal spheres [4]. Generalizations are mixtures of
spheres with different sizes such that small spheres fit
between large spheres to stabilize binary crystals. Early
experimental realizations are binary crystals isostructural to
AlB2 and NaZn13 found in natural opal gems [5–7]. More
recent experiments [8–12] and theory [13–20] predicted
additional ones. By now, four binary crystals have been
proposed in the hard sphere phase diagram near the solidus
line: NaCl (0.30 ≤ α ≤ 0.41), AlB2 (0.45 ≤ α ≤ 0.62),
NaZn13 (0.54 ≤ α ≤ 0.61), and Laves MgCu2 and
MgZn2 (0.76 ≤ α ≤ 0.84). This list identifies binary crys-
tals by their atomic prototype and contains the reported
ranges for size ratio α ¼ σS=σL, where σS and σL are
the diameters of small and large spheres, respectively.
Additional binary crystals, such as CsCl [11], are believed
to be metastable or appear only at high packing fraction ϕ
as densest packings [21–23].
Equal-sized hard spheres crystallize rapidly into the face-

centered-cubic (fcc) crystal or stacking variants thereof in
simulation, and they have been an ideal testing ground for
studying fundamental aspects of crystal nucleation and
growth [24–26]. It was thus expected that simulations of
binary hard sphere fluids produce binary crystals in a
similar manner. This has not been the case. To date, the
only binary hard sphere crystal growth reported in simu-
lation is NaCl [18]. That report is more than 20 years old,
and the crystals grown are highly defective with many
vacancies of the small spheres [27,28]. AlB2 so far required
a seeding procedure to grow [29]. Laves phases and NaZn13
formed from size-disperse sphere fluids only with the

assistance of Monte Carlo swap or resize moves [30,31]
and nearly hard spheres where particle softness enhances
crystallization [32]. The absence of binary hard sphere
crystallization in simulation has been puzzling. Here, we
report the spontaneous formation of AlB2, NaZn13, and
Laves phases in simulation directly from the fluid. Our
results demonstrate that binary hard sphere crystals grow
robustly and reproducibly in standard event-driven molecu-
lar dynamics (EDMD) given only sufficient simulation time
and large enough system size. Surprisingly, Laves phases
crystallize via nucleation and growth as well as via spinodal
decomposition. We find that the bottleneck for binary
crystal growth is diffusion in the dense fluid.
Growth of Laves phase.—Laves phases are of relevance

for materials scientists because they are the most common
binary intermetallic compounds [33] and have interesting
photonic properties when self-assembled from colloids
[34]. For this reason, we focus on their growth first. We
speed up crystallization in an initial test by combining
EDMD simulations with swap moves [30,31,35–40].
Particle pairs are attempted to be swapped as a
Monte Carlo move at every collision [41]. Gibbs free-
energy calculations [19] guide us to the parameter set
ðϕ; αÞ ¼ ð0.57; 0.80Þ, which lies in the fluid-Laves coex-
istence regime slightly below the solidus line. We initialize
a simulation at composition LS2 in the fluid state and run it
at isochoric (constant volume) conditions with periodic
boundaries. The ordering progress of our system is moni-
tored by recording reduced pressure P� ¼ P=Π over
reduced simulation time t� ¼ t=τ. Here, Π ¼ kBT=VL with
volume of the large sphere VL ¼ πσ3L=6 is a unit of
pressure and τ ¼ σL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m=kBT
p

is a unit of time.
Pressure evolution is shown as a blue curve in Fig. 1(a).

After a rapid initial relaxation of the fluid over time
3 × 103τ, pressure decreases slowly while the system starts
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ordering, then gradually faster, until it reaches a constant
slope. Crystalline order in the system is well characterized
by the q6 local bond-orientational order parameter [41–43].
The distribution of q6 values in the system shows pro-
nounced peaks [Fig. 1(b)], which can be assigned to the
fluid (broad central peak) and the two particle species in the
solid (narrow outer peaks). We fit the peaks to compute
solid fraction. Evolution of solid fraction [red curve in
Fig. 1(a)] essentially mirrors the evolution of pressure and
increases in sync with the pressure drop. The slopes of both
curves come to an abrupt halt at t ¼ 30 × 103τ, indicating
the end of the crystallization process. After this time, the
system reached an equilibrium of about equal amounts of
fluid and solid in coexistence.
A snapshot of the equilibrated system viewed along a

twofold symmetry axis [Fig. 1(c)] confirms the coexist-
ence. In projection, particles are arranged into columns in
the crystal (top part) and are disordered in the fluid (bottom
part). The pattern of the crystal in this projection consists of
straight rows of small spheres separated by zigzag rows of
pairs of large spheres alternating with single small spheres.
Such a pattern is characteristic of Laves phases. We extract
the stacking sequence of the Laves phase as indicated by
the red line in Figs. 1(c) and 1(d). Hexagonal Laves MgZn2
(C14) has ABA stacking, which gives a zigzag line. Cubic
Laves MgCu2 (C15), on the other hand, has ABC stacking,
which results in a straight line. We observe both straight
and zigzag segments along the red line, demonstrating that
our Laves phase is a stacking of C14 slabs and C15 slabs.
In this sense, Laves phase crystallization in our binary
system resembles crystallization of identical spheres, which
forms stacking variants of fcc.
Laves phase crystallization pathway.—Our simulation

in Fig. 1 established Laves phase growth from the binary
hard sphere fluid using swap moves rather easily. To show
reproducibility and generality, we perform ten swap

simulations and ten nonswap simulations at the same
parameters and with similar initial conditions. Well-ordered
Laves phases form in all 20 simulations. Both simulation
methods lead to similar pressure-time pathways (Fig. S1 in
the Supplemental Material [41]), even though the speed
in which these pathways are traversed is different. As
expected, swap simulations are significantly faster in
crystallizing the binary fluid. The speed-up is not constant
but increases from 20× to 120× [Fig. 2(a)], demonstrating
that the efficiency of swap moves improves over time.
Indeed, the acceptance probability of swap moves increases
over the same time window (Fig. S2 in the Supplemental
Material [41]). This indicates an increase in available free
volume in the fluid and explains the higher speed-up
toward the end of the simulation. Swap moves primarily
enhance diffusion. We conclude that particles are integrated
faster into the crystal than they diffuse through the fluid.
Therefore, diffusion in the fluid is the bottleneck process
for Laves phase growth.
We analyze one exemplary nonswap simulation pathway

in more detail by tracking crystalline clusters. Figure 3(a)
shows the evolution of the number of clusters and the size
of the three largest clusters. A particle is identified as
solidlike using a q6 cutoff (Fig. S3 in the Supplemental
Material [41]). A solidlike particle belongs to a cluster if it
has more than five solidlike particles within distance 1.1σL.
Already right at the start of the simulation, ten clusters are
detected, indicating there is a very small or negligible free-
energy barrier for the Laves phase to form. The clusters grow
independently, and their number decreaseswhen theymerge,
which is also directly apparent in simulation snapshots at
increasing times [Figs. 3(b)–3(e)]. After this time, the solid
consolidates by removing grain boundaries and transforms
its polycrystalline state into a Laves phase single crystal. A
video of the growth process for the time window 0 ≤ t ≤
2 × 106τ is contained as Supplemental Material [41].

(a) (b) (c) (d)

FIG. 1. Crystallization of the Laves phase from a binary hard sphere fluid using a hybrid EDMD simulation with swap moves. The
system contains 9999 particles at composition LS2 and is simulated at ðϕ; αÞ ¼ ð0.57; 0.80Þ. (a) Evolution of pressure (blue) and solid
fraction (red) with simulation time. (b) Distribution of local bond-orientational order parameters q6 at fluid-solid coexistence. Solid
fraction is computed by fitting the distribution with three Gaussians as indicated by dashed curves. (c) Final snapshot and (d) enlarged
view of the simulation showing the coexistence of Laves phase and fluid. Large spheres are represented by yellow color, small spheres
by blue color. Particles are drawn at 50% of their size for better visibility. Red line indicates the stacking sequence.
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Overall, Laves phase growth in this simulation proceeds not
as predicted by classical nucleation theory but as expected
from spinodal decomposition. This is surprising given that
our simulation parameters are chosen below the solidus
line in the coexistence regime (Fig. S4 in the Supplemental
Material [41]).
Our results so far do not exclude a nucleation and

growth regime at lower packing fraction closer to the
liquidus line. We analyze the type of crystallization
transition by performing 15 × 50 swap simulations across
the packing fraction range 0.56 ≤ ϕ ≤ 0.575. Indeed, the
crystallization rate grows rapidly at ϕ ≤ 0.565 as
expected for nucleation and growth and then saturates
[Fig. 2(b)]. At the same time, the maximal crystal growth
speed decays from a plateau for ϕ ≥ 0.568 as expected
for spinodal decomposition [Fig. 2(c)]. Together, our
analysis indicates a transition from nucleation-and-growth
behavior with stochastic onset of crystallization to spi-
nodal-decomposition behavior where crystallization path-
ways collapse. This transition is also apparent directly in
the evolution of pressure curves (Fig. S5 in the
Supplemental Material [41]).
Binary crystal state diagrams.—So far, we investigated

binary crystal growth for a specific set of parameters in
detail. Now, we vary the packing fraction ϕ and size ratio α
more systematically to obtain full state diagrams. We focus
on the compositions LS2 and LS13, for which binary
crystals have been predicted. Simulations run for a total
time of 2 × 106τ. Simulations that crystallize undergo their
phase transition completely and fully grow intowell-ordered
crystals.
We start with composition LS2. Figure 4(a) shows the

state diagram in the vicinity of Laves phases and Fig. 4(b)
the state diagram in the vicinity of AlB2. Both binary
crystals form over extended parameter regions. The size
ratio range for the Laves phases, 0.76 ≤ α ≤ 0.86, and the

(a) (b) (c)

FIG. 2. Laves phase growth kinetics. Simulation parameters and conditions as in Fig. 1. (a) Simulation times necessary to reach certain
pressure values in swap and nonswap simulations are compared on the two plot axes. The speed-ups for early and late crystallization are
indicated by dashed lines. (b) Crystallization rate gives the inverse mean time to find a growing crystal in a simulation. As density
increases, we see a transition from rare nucleation events to nearly constant crystallization rates for spinodal decomposition. Error bars
indicate the spread assuming nucleation and growth as the mechanism. (c) Maximal growth speed is defined as the fastest pressure drop
and is highest in the transition region (gray area). Weak oversaturation lowers the entropy gain of an ordered structure, and high density
slows diffusion. Both factors are balanced at the onset of spinodal decomposition. Data points in (a) and (b), (c) are averaged over ten
and 50 runs, respectively. Error bars show the standard error.

(a)

(b)

(d)

(c)

(e)

FIG. 3. Exemplary Laves phase growth pathway from a non-
swap simulation. Simulation parameters and conditions as in
Fig. 1. (a) Evolution of the number of clusters and the sizes of the
three largest clusters (“cluster 1” to “cluster 3”). Simulation
snapshots at times (b) t ¼ 2 × 103τ, (c) t ¼ 105τ, (d) 5 × 105τ,
and (e) 2 × 106τ. Particles are colored according to their local
environment. Blue particles have high q6, yellow particles low q6.
Green particles have intermediate q6 corresponding to a fluidlike
environment. Nonclustered particles are drawn with reduced size
for better visibility.
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lower limit of size ratio for AlB2, α ¼ 0.46, agree with
predicted values [13,19]. For 0.57 ≤ α ≤ 0.75, the system
remains amorphous. For α ≤ 0.45, the binary fluid phase
separates into coexisting NaCl and AlB2 solids. For
α ≥ 0.87, the fluid forms the substitutionally disordered
fcc solid.
Results for composition LS13 are shown in Fig. 4(c). The

binary crystal found at this composition, NaZn13, is a
complex arrangement of large spheres on a simple cubic
lattice and icosahedra made from 13 small spheres at body-
centered positions. NaZn13 forms in the range 0.54 ≤ α ≤
0.61 as predicted by free-energy calculation [14,15]. The
range of packing fractions, for which crystallization is
observed, is for all three binary crystals about 3%. Growth
of AlB2 is more difficult and leads to more defects than
growth of Laves phases and NaZn13, possibly because it
occurs at higher packing fractions.
Discussion and conclusions.—Our findings demonstrate

that binary crystal growth from the binary hard sphere fluid
is robust and reproducible. Why then have similar binary
hard sphere crystals not been seen in simulation before?
We are not sure. But we can list a few arguments that
indicate doing so is not necessarily trivial. In simulations,
growth without swap moves requires more than two weeks
of continuous simulation with today’s fastest processors at
the right parameters to obtain well-defined crystals that are
easy to identify. Our longest simulations ran for more than
four weeks. While this is not a particularly long simulation
time, it clearly exceeds typical hard sphere simulation
times. EDMD simulations cannot be parallelized effi-
ciently. Furthermore, many simulations in the past used
Monte Carlo simulation instead of EDMD, which slows
down the growth process further by about one order of
magnitude [45].

We map our simulations on two experimental conditions:
magnesium atoms and polystyrene colloids. The unit of
time for magnesium atoms at a temperature slightly below
the solidus line for hexagonal Laves MgZn2, T ¼ 850 K,
corresponds to τ ¼ 0.6 ps [41]. An atom takes on average
about the time τ to move over its diameter. We estimate that
Laves phase crystallization requires an experimental time
of 107τ ¼ 10 μs to form nanocrystalline grains. Such times
are easily reachable. This explains why Laves phases are
ubiquitous in alloys. Colloidal particles, on the other hand,
are much larger and slowed down by drag in solution. It is
possible to account for most of the effects of hydrodynamic
interactions by rescaling the timescale for nucleation and
growth by the long-time diffusion coefficient [46]. We use
the Stokes-Einstein equation to estimate τ ¼ 0.2 s for
colloids with diameter 1 μm suspended in water [41].
Only crystallization of identical hard sphere colloids into
fcc has been achieved with such large particles as it is about
103 times faster than Laves phase crystallization, even
though the softness of charged spheres seems to help obtain
a variety of binary structures [47–50]. Crystallization
speeds up proportional to σ−3 with shrinking colloid
diameter σ. Experiments with σL ¼ 170 nm colloids need
to rest for months at the optimal condition to form Laves
phases [12], which corresponds to an equilibration time of
109τ to 1010τ to grow macroscale crystals. Even smaller
≤ 10 nm nanoparticles crystallize rather easily into binary
superlattices [51–54].
There have been concerns that swaps alter phase trans-

formation pathways because they preferentially accelerate
specific aspects of kinetics. At least for the processes
investigated here, crystallization of hard sphere Laves
phases, trajectories with and without swap are indistin-
guishable. If these observations are confirmed in more

(a) (b) (c)

FIG. 4. Packing fraction–size ratio state diagrams in the vicinity of the stability regions of the three binary hard sphere crystals
isostructural to (a) Laves phases, (b) AlB2, and (c) NaZn13. Crystal structures are identified using bond-orientational order diagrams and
directly in snapshots (see Figs. S6 and S7 in the Supplemental Material [41] and Ref. [44]). Systems contain 1200 particles at
composition LS2 in (a), (b) and 896 particles at composition LS13 in (c). Simulations in (a) are run with swaps; large symbols represent
Laves phase formation in nonswap simulations. Nonswap simulations crystallize less readily, which is apparent near the boundary of the
stability regime and at high packing fraction. Simulations in (b), (c) are run without swaps because the acceptance probability of swap
moves is too low for swaps to be useful. At each state point, simulations are repeated twice, and phases reported are observed at least
once in simulation.
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systems, then swaps [30,31,35–40] can become a standard
tool for simulating mixtures, in particular those with small
size difference. Swap methods have the potential to speed
up such simulations by orders of magnitude. Finally, our
findings add to the growing list of recent observations
of crystallization processes in model systems that were
once believed to be good glass formers [31,32,37,55,56].
Knowledge of crystal structures competing with the amor-
phous state, as we report here for the binary hard sphere
fluid, is important to ensure that the analysis of local order
and particle dynamics [57–59] in such model systems
intended for glasses is not affected by hidden crystallization
transitions.
In conclusion, this work constitutes the first systematic

simulation study of binary crystallization across composi-
tion and thermodynamic parameters. Our finding of a
transition from nucleation and growth to spinodal decom-
position inside the fluid-solid coexistence demonstrates a
clear difference of the crystallization behavior of binary
hard sphere mixtures as compared to the crystallization
behavior of identical hard spheres.
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