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Two-dimensional systems may admit a hexatic phase and hexatic-liquid transitions of different natures.
The determination of their phase diagrams proved challenging, and indeed, those of hard disks, hard regular
polygons, and inverse power-law potentials have only recently been clarified. In this context, the role of
attractive forces is currently speculative, despite their prevalence at both the molecular and colloidal scale.
Here, we demonstrate, via numerical simulations, that attraction promotes a discontinuous melting scenario
with no hexatic phase. At high-temperature, Lennard-Jones particles and attractive polygons follow the
shape-dominated melting scenario observed in hard disks and hard polygons, respectively. Conversely, all
systems melt via a first-order transition with no hexatic phase at low temperature, where attractive forces
dominate. The intermediate temperature melting scenario is shape dependent. Our results suggest that, in
colloidal experiments, the tunability of the strength of the attractive forces allows for the observation of
different melting scenarios in the same system.
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Two-dimensional (2D) systems with short-range inter-
actions melt either via a first-order solid-liquid transfor-
mation or via a two-step process with subsequent solid-
hexatic and hexatic-liquid transitions. The two-step sce-
nario may further follow the Kosterlitz-Thouless-Halperin-
Nelson-Young (KTHNY) paradigm [1–3], with continuous
solid-hexatic and hexatic-liquid transitions, or the mixed
one [4], where a discontinuous hexatic-liquid transition
follows a continuous solid-hexatic one. The possibly
enormous value of the hexatic correlation length makes
it difficult to ascertain which of the above melting scenarios
a system follows. However, the increase in computational
power and the development of novel algorithms, and
careful experiments, allowed researchers to make progress
in recent years. For instance, it is now ascertained [4,5] that,
in hard disks, a discontinuous hexatic-liquid transition
follows a continuous solid-hexatic one. In hard regular
polygons, the melting transition depends on the number of
edges, e.g., hexagons and squares following the KTHNY
melting scenario and pentagons following the first-order
one [6]. The melting scenario of 2D systems interacting via
power-law potentials [7,8] has been demonstrated to
depend on the stiffness of the interaction [9]. In these
recently settled cases, density drives the melting transition,
and temperature plays no role as the interaction potentials
lack an energy scale.
At both the molecular and colloidal scale, attractive

forces are prevalent, and the phase behavior is both
temperature and density dependent. The effect of attractive
forces on 2D melting remains, however, controversial.

Indeed, Nelson noticed that attraction may lead to a variety
of phase diagrams, illustrating possible scenarios with the
hexatic phase occurring in an intermediate temperature
range [10,11], for Lennard-Jones (LJ) particles. This would
imply that a weak attraction promotes the hexatic phase,
while a strong one suppresses it. In attractive systems, the
existence of the hexatic phase is controversial, as this phase
has been observed in some studies [12,13], but not in others
[14,15]. The complete mapping of the phase diagram of LJ
particles is a recent, but still debated, achievement [16];
indeed, at high-temperature, where attractive forces are
negligible, LJ particles have been found not to follow the
melting scenario of 1=r12 [9,16] ones.
Here, we demonstrate, via the numerical determination

of the temperature-density phase diagram of attractive
hexagons, pentagons, squares, and LJ point particles, that
attraction universally influences the melting scenario by
suppressing the hexatic phase and promoting discontinuous
transitions.
We simulate attractive hexagons (N ¼ 48 071), penta-

gons (N ¼ 20 449) and squares (N ¼ 20 521), as well as
Lennard-Jones point particles (N ¼ 3182), under periodic
boundary conditions, in the canonical ensemble using the
graphics processing unit-accelerated GALAMOST package
[17]. We construct the extended polygons by lumping
together LJ point particles equally spaced along the
perimeter, as shown in Fig. S1 [18]. The resulting short-
ranged attractive interaction, detailed in the Supplemental
Material [18], allows estimating the size of the polygonal
particles and their interaction energy scale, we adopt as our
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units of length and energy, respectively. For the considered
state points and interaction, the values of N we consider are
large enough for finite-size effects to be negligible, as we
prove in Fig. S3 in the Supplemental Material [18]. We
verify thermal equilibration by ascertaining that the same
final state is reached in simulations starting from a liquid-
like configuration and an ordered one, as illustrated in
Fig. S2 [18].
Attractive hexagons at high temperatures.—We begin

by reporting results for the determination of the phase
diagram of attractive hexagons. At high temperature, the
pressure of attractive hexagons increases monotonically
with the density, as illustrated in Fig. 1(a). We associate
to each particle a local density defined as ρðr⃗iÞ ¼
f½PN

j¼1 Hðrc − jr⃗i − r⃗jjÞ�=πr2cg, where H is the
Heaviside step function, rc ¼ 50. Results are robust with
respect to choice of rc, unless it becomes very small, or of
the order of the system size. Figure 1(b) shows the
distribution of the local density, which is always unimodal.
The density dependence of the pressure and of the local
density distribution exclude the presence of a discontinuous
transition with a coexistence phase. We identify the differ-
ent pure phases investigating the spatial decay of the
correlation function of the translational, cðrÞ, and of the
bond-orientational order, g6ðrÞ. The translational correla-
tion function is cðr ¼ jr⃗i − r⃗jjÞ ¼ eiG⃗·ðr⃗i−r⃗jÞ, where G⃗ is
one of the first Bragg peaks, identified by the static
structure factor [4,19]. The bond-orientational correlation
function is gkðr ¼ jr⃗i − r⃗jjÞ ¼ hψkðr⃗iÞψ�

kðr⃗jÞi, where
ψkðr⃗iÞ is the bond-orientational order parameter of particle
i, defined as ψkðr⃗iÞ ¼ ð1=nÞPn

m¼1 expðikθimÞ. Here, n is
the number of nearest neighbors of the particle and θim is the

angle between ðr⃗m − r⃗iÞ and a fixed arbitrary axis. The
value of k reflects the rotational symmetry of the crystal
structure: k ¼ 4 for squares, k ¼ 6 for the other particles.
At high density, the system is in the solid phase.

Consistently, we observe the translational correlation func-
tion to decay as cðrÞ ∝ r−η with η ≤ 1=3, a consequence of
the Mermin-Wagner theorem [20], and the bond-orienta-
tional correlation function to reach a constant, as illustrated
in Figs. 1(c) and 1(d) for state point ①;. At lower density,
cðrÞ decays exponentially, while g6ðrÞ has a power-law
decay, g6ðrÞ ∝ r−η6 with η6 < 1=4. This occurs, for in-
stance, at state points ②–④, and indicates that the system is
in the hexatic phase. Further lowering the density, the
system enters the liquid phase, where both correlation
functions decay exponentially.
These findings demonstrate that, at high temperature, LJ

hexagons follow the KTHNY scenario [1–3]. This result
agrees with a previous investigation of the melting tran-
sition of hard hexagons [6], the role of attractive forces
being negligible at high temperatures.
Attractive hexagons at intermediate temperature.—As

the temperature decreases, the equation of state of attractive
hexagons flattens in a range of densities and develops a
Mayer-Wood [21] loop for T ≲ 0.53, as illustrated in
Fig. 2(a). Since pressure loops are induced by the inter-
facial free energy of coexisting phases [4,22], this indicates
the presence of a first-order transition. Within the coexist-
ing region, the distribution of the local density becomes
extremely broad and well described by the superposition of
two Gaussian functions, as shown in Fig. 2(b). Besides, the
distribution becomes system-size dependent, with a
bimodal character more apparent in larger systems, as
we show in Fig. S3 [18]. These findings further support the
presence of coexisting phases.
We determine the coexistence boundaries via the

Maxwell construction with the pressure curve fitted by
either a fifth- or a tenth-order polynomial. Outside of the
coexistence region, we identify the pure phases investigat-
ing the translational and the bond-orientational correlation
functions, as summarized in Figs. 2(c) and 2(d). We
observe the solid phase (e.g., ①), where cðrÞ decays
algebraically and g6ðrÞ is extended, the hexatic phase
(e.g., ②), where cðrÞ decays exponentially and g6ðrÞ is
extended, and the liquid phase (e.g., ⑦) where both
correlation functions decay exponentially. These results
indicate that, at intermediate temperatures, attractive hex-
agons follow the mixed melting scenario with a continuous
solid-hexatic transition anticipating a discontinuous hex-
atic-liquid transition.
We visualize the different phases by color coding each

particle according to the angle Δαik between the global
Ψ⃗k ¼ ð1=NÞPi ψkðr⃗iÞ and the local ψkðr⃗iÞ bond-orienta-
tional parameters, ψkðr⃗iÞ · Ψ⃗�

k ¼ jψkðr⃗iÞjjΨ⃗�
kj cosðΔαikÞ. In

the solid and hexatic phase, the long-range or quasi-long-
range nature of the bond-orientational order leads to

(a) (c)

(b) (d)

FIG. 1. High-temperature melting of attractive hexagons
(a) Equation of state at T ¼ 1.40. Different symbols correspond
to different phases, as illustrated in the legend. The black line is a
fifth-order polynomial fit. (b) The local density histograms,
(c) the translational correlation function cðrÞ, and (d) the
bond-orientational correlation function g6ðrÞ for different den-
sities, as indicated in (a).
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snapshots with a uniform color, as in Fig. 2(e) ①and ②;. In
the liquid phase, Fig. 2(e) ⑦, the snapshot appears almost
randomly colored, due to the short-range of the bond-
orientational order. In the coexistence phase, Fig. 2(e) ⑤,
the coexistence of hexatic and liquid phases lead to that of
regions of uniform color and regions randomly colored.
Attractive hexagons at low temperature.—As the tem-

perature decreases, the coexistence region widens, and the
hexatic phase shrinks, as is apparent in Fig. 2(a). At low
enough temperatures, therefore, melting occurs via a first-
order liquid-solid transition with no hexatic phase. The
pressure loop and the bimodal character of the local density
distribution within the coexistence region, which we
illustrate in Fig. 3, confirms that the system undergoes a
discontinuous transition at low temperature.
Furthermore, snapshots of the system indicate that the

coexisting phases are of solid and liquid type, as in
Fig. 3(c). Therefore, we can exclude an intermediate
hexatic phase, further supporting a first-order melting
scenario at low temperature.
Shape and temperature dependence of the melting

scenario.—The phase diagram of Fig. 4(a) summarizes
the results we have obtained so far: for attractive hexagons,
melting is of KTHNY type at high temperature and
becomes, first, of mixed type and, then, first-order as the
temperature decreases. The system has no liquid-gas

transition, nor a solid-solid transition, as the attraction
range, we determine in Table I in the Supplemental
Material [18], is small but not much smaller than the
particle size. This suppresses the liquid-gas critical point
[23] without promoting a solid-solid transition [23–25]. In
the solid, the body orientation of the hexagonal particles is
long ranged, thus, excluding the presence of a plastic-
crystal phase.
We investigate the universality of the role of attraction in

the 2D melting by determining the phase diagram for
different particle shapes: squares, pentagons, and LJ point
particles (disks). Squares crystallize in the square lattice, all
other shapes in the hexagonal one. For pentagons, shape
frustration is not able to inhibit crystallization at the lowest
temperature (T ¼ 0.19) and the highest density
(ϕ ¼ 0.854) we studied. Details on the phase determination
are in Figs. S4 and S5 [18], for squares and pentagons, and
elsewhere for disks [26]. The resulting phase diagrams are
in Figs. 4(b)–4(d).
At high temperature, the polygonal particles follow the

melting scenario previously reported for hard particles [6],
KTHNY for squares and first-order for pentagons. LJ disks
follow the mixed scenario as r−12 particles [9]. As in
hexagons, in both squares and pentagons, the liquid-gas
transition is suppressed, and no plastic-crystal phase
occurs. In LJ disks, the liquid-gas critical point occurs at
low temperature and low density, well outside the param-
eter space we have investigated.
Regardless of the high-temperature behavior, melting

always occurs via a first-order solid-liquid transition at low
temperature, and the coexistence region broadens as the
temperature decreases. These findings imply that particles’

(a)

(b)

(c)

(d)

(e)

FIG. 2. Intermediate-temperature melting of attractive hexa-
gons. (a) Equation of state at T ¼ 0.60, 0.53, 0.49, and 0.46, from
top to bottom. Different symbols correspond to different phases,
as illustrated in the legend. The black lines are from polynomial
fits. Phase boundaries are marked by the red, dark yellow, and
blue lines. (b) Local density distributions, (c) translational and
(d) bond-orientational correlation functions, and (e) snapshots of
the system at T ¼ 0.53, for different densities. In (e) each
hexagon is color coded according to the angle between its local
bond-orientational parameter, and the global one.

(a) (b)

(c)

FIG. 3. Low-temperature melting of attractive hexagons.
(a) Equation of state at T ¼ 0.35. The black line is a guide to
the eyes. (b) Local density distributions at a density value within
the coexistence region. (c) Snapshot of the whole system (left),
and enlargement of part of it (right), at the corresponding value of
the density. The color code is as in Fig. 2(e).
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shapes fix the melting scenario at high temperature,
attractive forces at low temperatures. At intermediate
temperatures, conversely, both shape and attraction may
be relevant. In disks, the hexatic phase disappears as the
temperature decreases, making the melting transition first
order. In squares, the equation of state within the tetratic
region becomes flat as the temperature decreases without
the coexistence region shrinking, as we illustrate in Fig. S4
[18]. Hence, no intermediate mixed scenario separates the
high-temperature continuous melting and the low-temper-
ature discontinuous one. In this respect, squares differ from
hexagons and disks. In pentagons, the transition is always
first order.
These results consistently demonstrate that attraction

influences the melting scenario of 2D systems by promot-
ing the emergence of a coexistence region, if this is not
already present in the high-temperature limit, as well as
widening it. The widening of the coexisting region leads to
the disappearance of the hexatic-tetratic phase and, hence,
to a first-order melting transition.
Conclusions.—Different system properties affect the

melting scenario in 2D [6,9,27–29]. In this context, the
influence of attractive forces was unclear, despite their
prevalence at both the molecular and colloidal scale. We
have found that attractive forces induce a discontinuous
transition and widen the coexistence region at the expense

of the hexatic phase, making the low-temperature melting
transition first order. Hence, attractive forces never induce
the hexatic phase or widen the hexatic region, at variance
with previous speculations [10,11]. We suggest that attrac-
tive forces always promote the discontinuous transition, as
we demonstrated this occurring in systems which melt
according to different scenarios at high temperature.
Theoretically, our results suggest that the dislocation

core energy, Ec, is suppressed at low temperatures in the
presence of attractive forces. Conversely, at low temper-
ature, Ec=kbT ≫ 1, and a continuous two-step melting
scenario may occur, according to the KTHNY theory. We
are looking forward to the experimental investigation of our
predictions in colloidal systems, where the tuning of the
strength of the attractive forces, e.g., via the depletion
interaction, should allow for the observation of different
melting scenarios in the same system, e.g., colloidal
hexagonal-shaped particles.
The interparticle interaction of our polygonal particles

inherits their discrete rotational symmetry, as the attraction
range is small compared to the particle size, as we detail in
the Supplemental Material [18]. As the attraction range
increases, this discrete rotational symmetry vanishes and
the interaction becomes more rotationally symmetric.
Hence, while we have not explicitly investigated the role
of the attraction range on the phase behavior, we anticipate
that, on increasing the attraction range, the phase diagrams
of the polygonal particles evolve toward that of the LJ point
particles.
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