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Quantum magnets with pure Kitaev spin exchange interactions can host a gapped quantum spin liquid
with a single Majorana edge mode propagating in the counterclockwise direction when a small positive
magnetic field is applied. Here, we show how under a sufficiently strong positive magnetic field a
topological transition into a gapped quantum spin liquid with two Majorana edge modes propagating in the
clockwise direction occurs. The Dzyaloshinskii-Moriya interaction is found to turn the nonchiral Kitaev’s
gapless quantum spin liquid into a chiral one with equal Berry phases at the two Dirac points. Thermal Hall
conductance experiments can provide evidence of the novel topologically gapped quantum spin liquid
states predicted.
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A quantum spin liquid (QSL) is an exotic state of matter
in which localized spins do not order even at zero temper-
ature in contrast to magnetic ordering observed in conven-
tional insulating magnets. QSLs are highly entangled states
which cannot be characterized by a Landau local order
parameter. Exhibiting topological order, emergent gauge
fields and fractional excitations [1,2], they are at the heart
of an intense research activity. The first concrete example
of a two-dimensional QSL has been the resonating valence
bond (RVB) state envisioned by Anderson [3] to describe
the ground state of triangular antiferromagnets and as the
parent insulating phase of high-Tc superconductors. Due to
the spin correlations, a spin-flip in an RVB state fraction-
alizes into two neutral spin-1=2 particles (spinons) which
can propagate freely around the lattice. In spite of intense
experimental efforts, there is no unambiguous observation
of fractionalization—such as the expected spinon con-
tinuum in the spin excitation spectra—in real materials.
The interplay between strong Coulomb interaction and

spin-orbit coupling [4] in the honeycomb magnets such as
A2IrO3 [5] (with A ¼ Li, Na), H3LiIr2O6 [6], α-RuCl3, and
organometallic frameworks [7] can lead to special compass
interactions which frustrate the magnetic order of the S ¼
1=2 pseudospins. The exact QSL ground sate of the Kitaev
[8] model has opened the possibility of finding fraction-
alized excitations in spin-orbit coupled Mott insulators on
honeycomb lattices. From the decomposition of the spin
operators onto four noninteracting Majorana fermions,
Kitaev showed that the elementary spin excitations of
the Kitaev QSL (KQSL) are fractionalized into itinerant
Majorana fermions with Dirac dispersion, and localized
ones giving Z2 gauge fluxes. Recent observations on

α-RuCl3 [9,10] and H3LiIr2O6 [6] have been interpreted
in terms of the existence of such two types of excitations.
However, a realistic description of honeycomb materials

requires including additional spin interactions not included
in the Kitaev model as well as considering large magnetic
fields beyond the perturbative regime discussed so far.
Since there is no exact solution in these physically relevant
situations new theoretical approaches are required to
properly describe the system. For instance, exact numerical
and slave fermion approaches [11–13] of the Kitaev model
have found a transition to a gapless U(1) spin liquid phase
under sufficiently strong applied magnetic fields [14,15].
On the other hand, the effect of Heisenberg and symmetric
spin exchange terms needs to be considered [16,17] in
order to accurately describe the magnetically ordered
phases [18] observed in Na2IrO3 and α-RuCl3. Finally,
the next-nearest-neighbor Dzyaloshinskii-Moriya (DM)
has been invoked as being relevant for the description of
real materials [19] but its effect on the Kitaev model
remains little explored so far [20].
Here, we report on two novel topological QSLs arising

when either a strong magnetic field or a DM interaction are
considered in the pure Kitaev model. We have discovered
that the gapped QSL state with Chern number ν ¼ �1
(depending on the direction of the field) predicted at low
tilted magnetic fields [8], undergoes a novel topological
transition to a different, topologically gapped QSL with
ν ¼ �2. Such topological transition occurs in a regime in
which the Dirac cones disappear due to strong hybridiza-
tion between itinerant and localizedMajorana fermions. We
also predict the presence of a novel gapless chiral QSL
induced by the DM interaction and that is characterized by
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equal Berry phases at the two Dirac cones (ϕK ¼
ϕK0 ¼ �π) in contrast to the opposite Berry phases found
in the pure Kitaev model (ϕK ¼ −ϕK0 ¼ �π). The novel
topological gapped QSL states found here could be tested
through thermal Hall experiments.
Since we are interested in the description of competing

topological phases starting from the KQSL, the
HK ¼ 2

P
hiji;γ KγSγi S

γ
j—where the three nearest-neighbor

bonds hiji of the honeycomb lattice are denoted by γ ¼ x,
y, z—is the most relevant starting point [21]. We emphasize
the factor of 2 in the definition of the model. The
next-nearest-neighbor DM interaction: HDM ¼ P

⟪ij⟫ Dij ·
Si × Sj is also important for describing the magnetic orders
observed in Iridates [19,28], and it is known that, combined
with the magnetic field, can open a nontrivial topological
gap. For this purpose, we also consider the term
HB ¼ −

P
i B · Si. Hence, the final Hamiltonian reads:

H ¼ HK þHDM þHB; ð1Þ

and we will consider an isotropic Kitaev interaction, i.e.,
Kγ ¼ K in the rest of the Letter, as well as a the magnetic
field B and the DM interaction Dij ¼ D parametrized

in function of tilt parameters t and d as B ¼
Bðt; t; 1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2t2

p
and D ¼ Dðd; d; 1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2d2

p
,

respectively, both ranging from the pure z direction (t or
d ¼ 0) to the case perpendicular to the honeycomb plane
(t or d ¼ 1).
The full model is treated using Kitaev’s Majorana

decomposition of the spin Sα ¼ 1
4
ðibαc − i 1

2
ϵα;β;δbβbδÞ

[8] where greek letters span the space dimensions
ðx; y; zÞ and ϵα;β;δ is the Levi-Civita symbol (Fig. 1). In
this notation, b operators correspond to flux band variables
while c describes the itinerant Majorana fermions. These
are in the presence of the three other localized Majoranas
which act as gauge fluxes [see Fig. 3(a) for the dispersion
relation of the pure Kitaev model].
Going away from the specific Kitaev point requires the

proper consideration of the constraint on the number of
fermions—four Majoranas per spin—that can be only
achieved in average by introducing Lagrange multipliers
fλig:

HL ¼ i
4

X

i;α

λα

�

bαi ci þ
1

2
ϵαβδb

β
i b

δ
i

�

;

where summation over repeated indices is assumed. The
explicit implementation of the fermion constraint is crucial
for a proper description of model (1) containing terms other
than the pure Kitaev contribution and we have provided all
details in [22].
The complete phase diagram of model (1) can be nicely

represented in a ternary plot as displayed in Fig. 1 for B in
the [1,1,1] direction (t ¼ 1) and D along the z direction

(d ¼ 0) for simplicity, realizing that the case d ¼ 1 is
qualitatively similar. On this graph only, the full parameter
range of the model onto the plane fulfills the constraint
K þDþ B ¼ 1, providing K > 0, D > 0 and B > 0, the
area of the hexagons is proportional to the gap at this point,
and the color refers to different states of matter. In this (K,
D, B) constrained space, the vertex defined by (0,0,1)
corresponds to the topologically trivial (ν ¼ 0) fully
polarized (FP) state, (1,0,0), to the gapless Kitaev QSL
(KQSL) and (0,1,0) to a gapless classical state whose
magnetic properties remain yet to be determined. Three
different topological phases characterized by their Chern
numbers can be distinguished in the phase diagram. A
gapped topological QSL with ν ¼ þ1 denoted by GQSLþ1

is topologically equivalent to the QSL found by Kitaev at
weak magnetic fields. The novel gapped QSL with uncon-
ventional Chern number of ν ¼ −2 is denoted by GQSL−2.
The gray areas correspond to the FP state with ν ¼ 0. The
mechanisms driving these topological states are explained
below, but we emphasize here the presence of the two novel
gapped topological QSL with large Chern numbers,
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FIG. 1. Phase diagram of Kitaev model with DM interaction
under magnetic field. The full phase diagram of the Kitaev model
in the presence of a magnetic field pointing in the [1,1,1]
direction (t ¼ 1) is shown. Empty regions indicate gapless phases
and the size of the hexagonal symbols indicate the size of the gap.
Gray areas correspond to the gapped fully polarized (FP) phase
with Chern number ν ¼ 0, the red to a gapped QSL with ν ¼ þ1
denoted as GQSLþ1. A gapped QSL with an unconventional
Chern number of ν ¼ −2, termed GQSL−2 (dark blue) occurs
between the FP and the GQSLþ1. Away the KQSL at K ¼ 1
(open circle), an ungapped QSL, UQSL (thick red line) with
equal Berry phases at the two Dirac points occurs for B ¼ 0 and
K ¼ 1 at a nonzero DM, D < 0.5, which becomes the GQSLþ1

around D ∼ 0.5–0.65, to finally become gapless and nontopo-
logical at a larger D (dark gray). In this region, CR refers to
classical regimes, beyond the accessibility of the present theory.
The left inset shows the Majorana decomposition of the model
considered while the right inset shows the first Brillouin zone and
symmetry points of the honeycomb lattice.
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ν ¼ �2. These are the result of the strong competition
between the three terms entering the hamiltonian and occur
in intermediate regions between the FP and the GQSLþ1

phases. These phases are chiral QSLs since time reversal
symmetry is broken either explicitly by the applied mag-
netic field or spontaneously for B ¼ 0 and D ≠ 0.
Interestingly, at zero field, B ¼ 0, a small but finite DM
of D≲ 0.5 (with K ¼ 1) leads to equal Berry phases, ϕk,
around the Dirac nodes (see Fig. 1 for the first Brillouin
zone of the lattice) ϕK ¼ ϕK0 ¼ �π in contrast to the
opposite Berry phases found in the pure Kitaev model,
ϕK ¼ −ϕK0 ¼ �π. Hence, we have unraveled a new
ungapped QSL with nonzero chirality which we denote
by UQSL.
Applying a tilted magnetic field is found to open a gap in

the Majorana fermion spectrum, consistent with perturba-
tion theory [8]. The gap is opened symmetrically with
respect to the zero energy and the resulting gapped QSL is
topological with a nonzero Chern number ν ¼ �1, the sign
depending on the direction of the magnetic field. Our gap
arises naturally from imposing the constraints on the
Majorana fermions in contrast to a previous Majorana
mean field analysis which add by hand a three-spin term to
be able to open a gap [29]. We associate the gap opening to
the nonzero Lagrange multipliers (2) which lead to local
hybridization between matter and flux Majorana fermions
for B ≠ 0. We note that the one-particle constraints are not
automatically verified when considering models beyond
the pure Kitaev model even at the mean-field level so it is
necessary to impose them explicitly [22]. Hence, our
MMFT is capable of describing correctly the exact
KQSL at B ¼ 0 as well as the gapped QSL under low
magnetic fields without making any extra assumptions. We
finally note that closely related Abrikosov fermion mean-
field theories [18] imposing the one single-particle con-
straint through a single Lagrange multiplier [30] (our λz)
instead of three [31]—as we have done—can lead to
different results to our MMFT [22].
Concomitantly with the gap opening, the magnetic field

leads to nonzero chiral currents of Majorana fermions
between the next nearest neighbor (NNN) sites as shown in
Fig. 2(a). Only when the three components of the magnetic
field are nonzero, all λα are simultaneously nonzero as well.
This leads to hybridization among the four Majoranas at
each site which ultimately leads to the gap opening. The
size of the gap depends on t, the actual orientation of the
magnetic field. When the field is parallel to one of the
natural axis (say t ¼ 0 forB ¼ Buz), the gap is zero and we
have a gapless QSL. At a critical B we find that the �π
Berry phases at the Dirac points can switch their signs as
found earlier [29].
We now discuss the effect of DM on the pure Kitaev

model (B ¼ 0). As stated above, as the DM is increased the
Berry phases around the Dirac points become equal:
ϕK ¼ ϕK0 ¼ �π, indicating a change in the nature of the

KQSL which characterizes the UQSL. As the D parameter
is further increased above a critical value, D≳ 0.5 (with
B ¼ 0 and K ¼ 1), the system opens up a gap leading to a
topologically gapped chiral QSL with ν ¼ �1 for either
d ¼ 0 or 1, GQSL�1. The origin of the nonzero Chern
number may be associated with the occurrence of aniso-
tropic chiral amplitudes between NNN sites as shown in
Fig. 2(b) for d < 1. This lattice nematicity induced by
anisotropy of D is completely restored for d ¼ 1 at which
the NNN chiral amplitudes are the ones displayed in (a). In
any case, the DM interaction induces both an ungapped and
a gapped phase. This UQSL is a novel QSL which breaks
time reversal symmetry spontaneously in contrast with the
gapped chiral QSL reported on the decorated honeycomb
lattice [32] due to its gapless character. When a [001]
magnetic field (t ¼ 0) is applied in the presence of a
nonzero DM, a gapless QSL with the two Dirac cones
shifted in opposite directions by the same amount occurs.
The sublattice symmetry respected by the DM interaction
protects Dirac cones from opening a gap. By tilting the
magnetic field to t ¼ 1, a gap opens up as found in the case
of zero DM leading to a GQSL�1. But unlike opening
symmetrically around zero, the gap centers are equally
shifted in opposite directions at the two cones. In Fig. 3 we
show the evolution of the Majorana dispersions under a
[111] magnetic field (t ¼ 1). With no magnetic field
applied the MMFT dispersions consist on gapless
Majorana matter bands touching at the Dirac points and
flat bands describing localized Z2 fluxes. The flat bands are
threefold degenerate in this case. As the magnetic field
increases up to about B ∼ 0.6, (with K ¼ 1) a gap opens up
at the Dirac points while the flux bands remain almost flat.

(a) (b)

FIG. 2. Chiral amplitudes in the Kitaev model from the
Majorana mean-field theory. In (a) we show the NNN chiral
Majorana amplitudes, hcicji, induced in the ground state MMFT
wave function either by a magnetic field perpendicular to the
plane, t ¼ 1, or a DM vector oriented perpendicular to the plane
(d ¼ 1). These are responsible for the chiral QSL with Chern
number ν ¼ þ1 (GQSLþ1) discussed in the text. (b) Anisotropic
amplitudes (the thickness corresponds to the different strength)
arising from finite DM d ≠ 1 (with no applied magnetic field)
responsible for the opening of the gap for 0.5 < D < 0.65 (with
K ¼ 1 and d ¼ 0) in the GQSLþ1. The snapshots show one of the
two possible chiralities of the ground state (ν ¼ þ1). Note that (a)
and (b) amplitudes are smoothly connected as shown in the phase
diagram of Fig. 1.
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This GQSLþ1 phase—since it is gapped and ν ¼ þ1—is
adiabatically connected to the gapped QSL found by Kitaev
[8]. As the magnetic field is increased up to Bc ≃ 1.43 the
flux bands are gradually distorted becoming dispersive and
strongly hybridized with the Majorana matter bands. Note
also how the bands are becoming closer at the three M
points for B ∼ Bc. As the field is increased beyond Bc, a
gap opens up at this newly formed band touchingM points
with Berry flux magnitudes larger than π in contrast to
typical Dirac cones. This can be attributed to the fact that
the matter and fluxMajoranas are now forming unseparable
composite objects due to the strong hybridization in this
magnetic field regime [22]. Hence, we find a gapped
topological QSL with Chern number ν ¼ −2 emerging
in the range B ∈ ½1.43; 1.64�. It is interesting to note that a
CSL with ν ¼ 2 has been found in [30] but with an extra
symmetric spin term in the Hamiltonian. At larger magnetic
fields (B > 1.64) there is a transition to a gapped and fully
polarized insulator with a trivial topology (ν ¼ 0)—the full
polarization is an artifact of the method. The Majorana
dispersions are also strongly modified byD even for B ¼ 0.

Recent numerical studies [11–22,28–33] suggest the exist-
ence of a gapless intermediate phase in a somewhat similar
parameter range. In spite of the different features found
(gapless vs gapped), our gap closing around Bc can be
associated with the large enhancement of low energy
excitations developing near the PL phase. Interestingly,
we have supported by ED the fact that D and B combined
possibly lead to a gap opening. All these points are detailed
in [22].
To conclude, we discuss our results in the context of

Kitaev materials. Although they are mostly believed to have
ferromagnetic couplings [4,19,34], some works suggest
[35,36] AFM couplings as mostly considered here. QSL
behavior has recently been observed in the honeycomb
magnet H3LiIr2O6 [6] with the caution that H disorder in
this material can deviate magnetic couplings from the
Kitaev model [37,38]. Although α-RuCl3 is magnetically
ordered, there is experimental evidence for its proximity to
a QSL phase [36,39]. Under high pressure above 1 GPa
[40] or applying a magnetic field destroys AF order giving
way to a gapped QSL [41,42]. Strikingly, recent thermal
Hall conductivity experiments find fractional quantization
of the thermal conductance which is attributed to the
Majorana edge modes in a GQSLþ1 [9]. Nuclear magnetic
resonance experiments find a spin gap Δ ∝ B3 at small
fields [10] due to the fractionalization of the spin into two
gauge fluxes and a gapped Majorana fermion as predicted
by Kitaev [8]. Figure 4 shows that a similar spin gap
opening with a [111] magnetic field and zero DM should be
observed in antiferromagnetic (AFM) Kitaev materials.
Figure 4 also shows that in AFM Kitaev materials, the

FIG. 3. Majorana dispersions of the Kitaev model under a tilted
external magnetic field and zero DM interaction. The evolution of
the Majorana dispersions under a tilted t ¼ 1 magnetic field
comparing the case (a) with no applied magnetic field, B ¼ 0,
consisting of gapless Majorana dispersions and flat flux bands
(threefold degenerate) describing the Z2 fluxes, (b) with B ≃ 0.6,
where a gap has already opened and the flux Majorana bands
remain flat. This gapped QSL with Chern number ν ¼ þ1,
GQSLþ1, persists up to Bc ¼ 1.43 is adiabatically connected
with the KQSL, (c) with B ¼ 1.2, the Dirac cones have been
washed out and the gapped fluxes are strongly distorted becom-
ing dispersive, (d) with B ¼ 1.43, a gapped QSL with ν ¼ −2,
GQSL−2, arises between Bc and B ≃ 1.64 indicating a different
topological state from the KQSL. K ≡ 1 in this plot.

GQSL

GQSL

FP

FIG. 4. Dependence of the gap (top), the magnetic moment
(middle) and the Chern number (bottom) with an applied
magnetic field and zero DM interaction. The gap obtained from
the MMFT changes from Δ ∝ B3, expected from perturbation
theory, to Δ ∝ B around B� ∼ 0.6 under the magnetic field
B ¼ Bð1; 1; 1Þ= ffiffiffi

3
p

. A topological transition from a gapped
QSL with Chern number, ν ¼ þ1, GQSLþ1, to a QSL with
ν ¼ −2, GQSL−2, occurs at Bc ∼ 1.43. For B≳ 1.64 a topologi-
cally trivial polarized insulator is stabilized. K ¼ 1 in this plot.
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GQSLþ1 (under a positive magnetic field) would survive up
to an applied tilted magnetic field of B≲ Bc, way beyond
the perturbative regime. The Majorana edge states in this
QSL will contribute to the thermal Hall conductance [8,43],
κxy=T ¼ ðπ=12Þðk2B=ℏdÞ, as recently observed [9]. This is
half and opposite in sign to the thermal Hall conductance
observed in an integer quantum Hall effect experiment [44]
associated with electronic charge. Strikingly, since a distinct
gapped QSL with ν ¼ −2 in the range B ∼ 1.43–1.64 arises
(∼90 Tesla using 2K ≈ 7 meV for α-RuCl3), our analysis
predicts a sudden jump of κxy=T, the thermal Hall coef-
ficient, from ðπ=12Þðk2B=ℏdÞ to −ðπ=6Þðk2B=ℏdÞ around Bc.
This signals a novel topological transition in AFM Kitaev
magnets that could be searched experimentally.
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