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(Received 20 November 2019; accepted 28 April 2020; published 28 May 2020)

An accurate prediction of atomic diffusion in Fe alloys is challenging due to thermal magnetic
excitations and magnetic transitions. We propose an efficient approach to address these properties via a
Monte Carlo simulation, using ab initio–based effective interaction models. The temperature evolution of
self- and Cu diffusion coefficients in α-iron are successfully predicted, particularly the diffusion
acceleration around the Curie point, which requires a quantum treatment of spins. We point out a
dominance of magnetic disorder over chemical effects on diffusion in the very dilute systems.
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Atomic diffusion plays a central role dictating the
kinetics of numerous physical processes in solids, such
as surface and interfacial segregation, precipitation, and
phase transitions. Iron-based alloys, being the basis of
steels, are certainly one of the most studied systems from
both theoretical and experimental points of view.
Experimental data for solute and solvent diffusion in iron
alloys are usually known at rather high temperatures only
(above 750 K) [1–14], whereas a quantitative modeling of
the diffusion coefficients as functions of the temperature in
these systems is not obvious, since the effects of thermal
magnetic excitations and magnetic order-disorder transi-
tions need to be properly described.
Even the simplest case of self-diffusion in body-

centered-cubic (bcc) iron via the vacancy mechanism is
still the focus of various recent modeling efforts [15–19].
To the best of our knowledge, there were very few
theoretical studies on solute diffusion in iron across the
Curie point [15,16,18]. To address these properties at a
thermal-vacancy regime, vacancy formation and migration
free energies should be determined, as the diffusion of Fe
and most substitutional solutes in iron is ruled by first
nearest-neighbor (1nn) atom-vacancy exchanges.
Density functional theory (DFT) calculations provide an

accurate estimation of the vacancy properties in the ground-
state ferromagnetic (FM) bcc iron [15–17,20,21]. But
theoretical determination of these properties at increased
temperatures, when magnetic excitations emerge, becomes
nontrivial [22–25]. So far, many previous studies have
estimated the temperature evolution of the diffusion acti-
vation energyQðTÞ using the Ruch model [26], with which
the diffusion coefficients DðTÞ ¼ D0 expf½−QðTÞ�=kBTg
can be obtained.
At a given temperature,QðTÞ is actually themagnetic free

energy of activation, which includes the contributions from
both the vacancy formation and the various atom-vacancy

exchange barriers. In the case of self-diffusion, it can be
written as a sum of the vacancy formation and the vacancy-
atomexchangemagnetic free energy [QðTÞ¼Gf

magþGm
mag].

These values are called “magnetic” free energies because
only the magnetic entropy is included.
The Ruch model [26] proposes

QðTÞ ¼ QPMð1þ αS2Þ; ð1Þ
where QPM is the activation enthalpy of a perfect para-
magnetic (PM) state, where no more magnetic correlation is
present. S is the magnetic order parameter (the reduced
magnetization), and α is a scalar. Note that, to apply the
Ruch model, the temperature dependence of S and either
QPM or the α parameter should be known, in addition to
QFM (the activation enthalpy of the ideal FM state). An
example of such an application of the Ruch model can be
found in Ref. [27].
For a perfect PM state, the vacancy formation and

migration enthalpies, and therefore QPM, were often esti-
mated via DFT, by adopting, for instance, the disordered
local moment approach within a collinear approximation
[17,23], or via an expansion on a set of spin spirals [16,22].
In any case, the magnetic short-range order (MSRO) was
generally not considered. Such PM states are therefore
expected only at extremely high temperatures. The temper-
ature dependence S for a pure or a dilute system can be
easily provided by experiments or simple Ising or
Heisenberg models. It is, however, more difficult to obtain
for concentrated alloys with any microstructure.
Concerning intrinsic approximations of the Ruch model

[26], it is derived from the Ising model, and, due to a mean
field approximation, the MSRO effect is absent. Therefore,
QðTÞ ¼ QPM immediately above the Curie point.
Another approach used to determine the temperature

evolution of the diffusion properties is the spin-lattice
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dynamics [18,28], employing empirical potentials and
Heisenberg-interaction terms. In particular, a recent study
of Wen and Woo [18] reported a detailed investigation of
self-diffusion in bcc iron. A major advantage of such an
approach consists in the natural inclusion of the combined
phonon-magnon effects. However, in practice, an accurate
potential is not obvious to parameterize, especially for
magnetic alloys with structural defects. Furthermore, such
spin-lattice dynamics simulations can hardly reach very
long timescales and large simulation systems (typically a
few tens of nanoseconds and 16 000 atoms as in Ref. [18]).
The present study aims at proposing an efficient and

quantitative modeling approach that enables a continuous
prediction of diffusion properties versus temperature,
including explicitly spin and atomic variables. A DFT-
based effective interaction model (EIM) coupled with on-
lattice Monte Carlo (MC) simulations is adopted. We
consider the case of self- and Cu diffusion in bcc iron to
illustrate the ability of the methodology to predict diffusion
properties, which can be transferred to other magnetic
metal alloys.
Some previous studies have already proposed EIMs with

both magnetic and chemical variables [22,29–34] but
without considering defects and, therefore, not able to
study diffusion. On the other hand, more conventional
EIMs have been developed to study thermodynamic and
kinetic properties without explicitly including spin varia-
bles [35–38]. The present EIM [Eq. (2)] consists in a
magnetic part with a Landau-Heisenberg form as in
Refs. [30,32,33,39]. This allows one to account for both
longitudinal and transversal excitations of spins. In addi-
tion, the pairwise terms (Vij) capture chemical interactions
between atoms:

H ¼
XN

i

ðAiM2
i þ BiM4

i Þ þ
XN

i

XP

n

XZn

j

JðnÞij Mi ·Mj

þ
XN

i

XP

n

XZ

j

VðnÞ
ij ; ð2Þ

where Zn is the coordination of the nth neighbor shell and
Mi is the magnetic moment of the ith atom. Ai and Bi are

the magnetic on-site coefficients. JðnÞij and VðnÞ
ij denote,

respectively, the magnetic exchange-coupling and the
chemical-interaction parameters for i and j atoms being
nth nearest neighbors.
First, an EIM for pure iron in a bcc lattice is para-

meterized on DFT [40–51] data. Fitting the magnetic
parameters using DFT consists in evaluating the energy
difference between systems with similar atomic configu-
rations but distinct magnetic configurations (see [52] for
details). We checked that the Curie temperature is correctly
reproduced (TC ¼ 1050 K, the experimental value being
1044 K [53]). Then, to include the presence of a vacancy

(EIMV), the on-site A and B parameters are modified for
atoms located at the first and second nearest-neighbor (1nn
and 2nn, respectively) sites of the vacancy, in order to
reproduce the change of their magnetic moment magnitude,
while, for simplicity, the Jij remain unchanged. Vacancy
formation energies for distinct magnetic spin configura-
tions around the vacancy predicted by DFTare successfully
captured by this simple model [52]. In order to simulate the
atomic migration, another pure-iron-derived EIMSP is also
constructed to describe the energetics of an Fe atom at a
saddle-point position. In this case, the on-site and Jij
parameters of the saddle-point atom and their 1nn and
2nn atoms are modified based on DFT data. The atom-
vacancy exchange barriers are then determined by the
energy calculated using the EIMV and the EIMSP. Note
that such a way of barrier determination was intensively
applied in previous studies using nonmagnetic interaction
models [35–37].
For Cu diffusion in bcc iron, a Cu atom and a vacancy

should be included in the iron system. Similarly, an EIM
with all the atoms at lattice positions and another one with
an atom (Fe or Cu) at a saddle-point site are parameterized
on DFT data on Cu-vacancy binding energies and atom-
vacancy exchange barriers with various spin configura-
tions. The numerical parameters of the various EIMs are
given in Ref. [52].
The lattice vibrational effects (vibrational entropies and

attempt frequencies) are not intrinsically accounted in the
present EIM–Monte Carlo setup but calculated separately
by DFT [52]. The magnon-phonon effects [54] are there-
fore not considered.
The tracer diffusion coefficients can be expressed with

the Einstein formula [55–57] with hr2i and t being the
mean square displacement of the tracers and the corre-
sponding physical time, respectively:

D� ¼ hr2i
6t

: ð3Þ

For the self-diffusion case, it can also be written in terms
of the vacancy concentration and the migration barrier at a
given T [58,59] as

DFe�
Fe ¼ a2f0Cvν0 exp

�
−Gm

mag

kBT

�
; ð4Þ

where a is the lattice constant, f0 is the self-diffusion
correlation factor (0.727 for a bcc lattice [60]), Cv is the
equilibrium vacancy concentration, ν0 is the attempt
frequency, Gm

mag is the magnetic free energy barrier for
the vacancy-Fe exchange (vacancy migration), and kB and
T are, respectively, the Boltzmann factor and the absolute
temperature. Here Cv ¼ exp½ð−GfÞ=kBT�, with Gf being
the vacancy formation free energy. Both magnetic and
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vibrational entropies are considered in this study, and the
latter is calculated via DFT at the FM state.
Similarly, the solute (Cu) tracer diffusion coefficient in

Fe at the dilute limit can be written [58,59] as

DCu�
Fe ¼ a2C1nn

v f2ν2 exp

�
−Gm;Cu

mag

kBT

�
; ð5Þ

where C1nn
v is the equilibrium vacancy concentration at a

1nn site of the solute, ν2 is the vacancy-Cu exchange
attempt frequency, f2 is the solute diffusion correlation
factor, and Gm;Cu

mag is the magnetic free energy barrier for the
vacancy-solute exchange.
We propose a Monte Carlo method which allows one to

determine the vacancy formation magnetic free energy as a
function of the temperature. Two separate Fe subsystems
are considered with the first one frozen at the FM state,
while the magnetic configuration of the second one is
allowed to evolve according to the temperature. The
vacancy is allowed to visit each site of the two systems
via the Metropolis algorithm. Then, based on the relative
number of visits to the two systems and the vacancy
formation energy at the FM state, which is known, the
magnetic free energy of vacancy formation versus temper-
ature can be obtained (more details in Ref. [52]). Note that,
as mentioned in Refs. [18,61,62], a quantum treatment of
spins is necessary for a correct prediction of the magnetic
entropy, at low temperatures. We therefore adopted the
Bose-Einstein statistics in our spin-MC simulations [52] up
to the Curie point, following the quasiharmonic approach
of Refs. [61,63].
Then, the Fe and Cu diffusion coefficients are obtained

by directly simulating the tracer diffusion experiments with
MC simulations [64,65]. We compute the mean square
displacement of the tracers (hr2i) and the physical time at
each temperature [Eq. (3)].
The physical time t is rescaled in order to consider the

equilibrium vacancy concentration instead of the actual
vacancy concentration of the simulation (the diffusion
coefficient is multiplied by the factor Cv=CMC) [35,36].
During these MC simulations, at each T, we start

performing 5 × 108 spin Metropolis MC steps to reach
the equilibrium magnetic state, and then 600 spin steps are
performed after each atomic MC step, consisting in a 1nn
atom-vacancy exchange based on a time residence algo-
rithm. For simplicity, we assume the typical time spent for
one atom-vacancy exchange is sufficiently short, so that all
the atomic spins remain frozen while going from the initial
to the saddle-point state. However, we have determined that
considering another assumption has a negligible effect on
the results. Indeed, similar simulations were performed
assuming the opposite, being that the spin-variation time is
much shorter than the lifetime of both the initial and the
saddle-point states, and very close migration barriers were
obtained [52]. This test suggests that these properties are

not sensitive to the detailed way of implementing the
characteristic time of spin variations and contribute to
support the validity of our results.
Via the same MC simulations, we also obtained the

magnetic free energy of vacancy migration (Gm
mag) in the

self-diffusion case and the magnetic free energy barrier for
Cu-vacancy (Gm;Cu

mag ) and the distinct Fe-vacancy exchanges
in the Cu diffusion case.
Figure 1 shows the obtained magnetic free energy for

vacancy formation and migration in pure iron, comparing
results applying the Bose-Einstein distribution and the
Boltzmann statistics for spin MC at low temperatures.
The difference between the two curves is significant, the
slope approaching to zero near T ¼ 0 only with the former
approach. Therefore, the quantum statistics is necessary to
obtain a correct low-temperature behavior of the vacancy
formation and migration entropies (Fig. 1), in agreement
with previous spin-lattice dynamics data [18].
The vacancy formation and migration energies at perfect

FM and PM states are listed in Table I, together with the
resulting activation energies. At the low-temperature limit,
we reproduce closely the DFT energies (see Table I). The
asymptotic PM energies are obtained at 2000 K. These
values for pure Fe are in good agreement with previous
DFT and available experiment values [16,52,66].
In the FM state, the values for iron and for Cu diffusion

are clearly different due to the Cu-vacancy attraction (0.24
and 0.17 eV for, respectively, 1nn and 2nn distances).

FIG. 1. Left panel: Magnetic free energy, enthalpy, and entropy
of formation. Right panel: Magnetic free energy, enthalpy, and
entropy of migration.
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However, such differences become significantly smaller in
the PM state, indicating the dominance of the magnetic
disorder over the chemical effect in the very dilute Fe-Cu
system.
As shown in Fig. 2, the present approach predicts the

self- and Cu-tracer diffusion coefficients as functions of the
temperature, in excellent agreement with experimental
studies [1–5,7,8,10–14]. Especially, the sudden deviation
from Arrhenius law near the Curie temperature is consis-
tently predicted without any additional assumption. The
change of slope (activation energy Q) between the ferro-
magnetic and the paramagnetic regimes is also successfully
predicted.
The self-diffusion coefficients obtained with purely

classical statistics are also shown for a comparison. It
reveals that using the Boltzmann distribution at low T in the
spin-MC simulations significantly underestimates the local
acceleration of diffusion around the Curie point.
Figure 2 also shows that the kinetic correlation factor f2

for Cu diffusion increases with the temperature up to an
asymptotic limit of 0.73, which is the f0 value in pure bcc
iron. To clarify the role of magnetic disorder on the f2, we
have performed similar MC simulations for Cu diffusion
but imposing a perfect FM order for all atomic-MC
temperatures. The results show that the kinetic correlation
factor of Cu diffusion increases more slowly when mag-
netic disorder is absent. This comparison together with the
smaller difference between different barriers at the PM than
at the FM state (Table I and Fig. 2) suggests the dominance
of the magnetic disorder over the chemical interaction
effect in this very dilute Fe-Cu system. Indeed, the
magnetic free energy of binding between a vacancy and
a Cu atom at 1nn decays from 0.24 eV in the FM state
(consistently with our DFT results) to 0.09 eV in the
PM state.
It is worth noting that, if applying the Ruch model using

the currently obtained QPM and QFM and SðTÞ, we obtain
very similar diffusion coefficients. For a closer comparison
between results from our method and by using the Ruch
model for an interpolation, Fig. 3 shows the respective data
for the activation free energy and the magnetic free energy
of vacancy formation and migration. As can be seen, both
methods give very close values, especially above the Curie

temperature. The largest differences occur between the
formation free energies at T < TC. In any case, the
discrepancies are smaller than 10%. This good agreement
between our approach and the Ruch model shows that the
effects of magnetic short-range order on vacancy properties
are rather limited. In the case of Cu solute diffusion, the
Ruch model also provides very close results [52].
These comparisons suggest that the simple Ruch model

allows a very good description of the temperature evolution
of activation, formation, and migration free energies in a
ferromagnetic system. However, it should be noted that the
Ruch interpolation requires an accurate knowledge of the
asymptotic (FM and PM) energetic values and the temper-
ature evolution of the magnetization. They are generally not

TABLE I. Values (in eV) of formation, migration, and activation free energies for Fe and Cu diffusion in bcc iron
at the ferromagnetic and paramagnetic limits. The error bars due to the fitting are estimated to 0.05 eV. Diffusion
prefactors for Fe and Cu diffusion are, respectively, 1.8 × 10−4ð�9 × 10−5Þ and 6.7 × 10−5ð�3 × 10−6Þ m2 s−1.

FeFM FePM CuFM CuPM

Hf 2.20 1.99 2.04 1.99
Hm 0.69 0.43 0.55 0.39
Q 2.92 2.46 2.66 2.44
Q (exp.) 2.63–3.10a 2.48–2.92a 2.53b 2.43b

aObtained from Refs. [1–5,7,8,10,66].
bObtained by an Arrhenius fitting of the diffusion data from Ref. [67].

FIG. 2. Upper-left panel: Self-diffusion coefficients of Fe versus
T, with and without quantum effects and comparison with
experimental data obtained from Refs. [1–5,7,8,10]. Bottom-left
panel: Diffusion coefficients of Fe and Cu, compared with
experimental results, obtained from Refs. [1–5,7,8,10] for Fe
and Refs. [4,14,67] for Cu. Upper-right panel: Kinetic correlation
factors of Fe self-diffusion (f0) and Cu diffusion (f2). The f2
kinetic correlation with the frozen FM state (see the text) is also
displayed. Bottom-right panel: Migration magnetic free energies
of various jumps.
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obvious to obtain both experimentally or from ab initio
calculations, especially for alloys beyond the dilute limit.
Also, if estimating the PM energies for highly itinerant
magnetic systems, such as fcc Ni or bcc Cr via DFT, local-
magnetism constraints should be applied, which can be
extremely time consuming [23,68].
In summary, we propose an approach to efficiently

predict atomic diffusion properties in iron, by performing
on-lattice Monte Carlo simulations using effective inter-
action models parameterized on DFT data. These EIMs
contain explicitly both chemical and magnetic variables
and the presence of a vacancy.
This approach naturally accounts for the interplay

between magnetic and chemical degrees of freedom.
It is shown to successfully predict the temperature

evolution of vacancy formation and migration magnetic
free energies, and the tracer diffusion coefficients of Fe and
Cu in bcc iron, across the Curie temperature. This approach
is also ready to address the diffusion as a function of solute
concentrations and in the presence of nonequilibrium
vacancies. The same approach is fully transferable to other
magnetic metal systems.
At variance with the DFT-Ruch method, the current

approach predicts properties for all temperatures regardless
of the magnetic state. The crucial issue is to accurately
parameterize the EIMs. On the other hand, it allows one to
reach to a calculation time of several orders of magnitudes
longer than the spin-lattice dynamics. Therefore, it is also
promising to address more complex kinetic processes than
the atomic diffusion, such as ordering, precipitation, or
segregation.

This work was partly supported by the French-German
ANR-DFG MAGIKID project. Ab initio calculations were
performed using Grand Equipement National de Calcul
Intensif (GENCI) resources under the A0070906020
project and the CINECA-MARCONI supercomputer
within the SISTEEL project.
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