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A novel method to calculate mode Grüneisen parameters of a material from first principles is presented.
This method overcomes the difficulties and limitations of existing approaches, based on the calculation of
either third-order force constants or phonon frequencies at different volumes. Our method requires the
calculation of phonon frequencies of a material at only the volume of interest, it is based on the second-
order differentiation of a corrected stress tensor with respect to normal mode coordinates, and it yields
simultaneously all the components of the mode Grüneisen parameters tensor. In this work, after discussing
conceptual and technical aspects, the method is applied to silicon, aluminum, scandium fluoride, and a
metallic alloy. These calculations show that our method is straightforward and it is suited to be applied to
the broad class of materials prone to exhibit structural instabilities, or presenting anisotropy, or chemical
and/or structural disorder.
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In thermodynamics, the Grüneisen parameter (γ) quan-
tifies the rate at which thermal pressure (p) at constant
volume (V) changes with internal energy (U) [1–4], which
in turn can be expressed in terms of the following macro-
scopic thermodynamic parameters,

γ ¼ V
∂p
∂U

����
V
¼ VαVBT

CV
; ð1Þ

where CV is the isochoric heat capacity, BT is the
isothermal bulk modulus, and αV is the coefficient of
volumetric thermal expansion. The Grüneisen parameter
can be measured by combining inelastic x-ray (or neutron)
scattering and x-ray diffraction experiments [5,6] or by
probing the elastic-stress pulses resulting from the heating
induced by brief bursts of MeV electrons or laser radiation
[2,7]. Although the general relevance of the Grüneisen
parameter stems from Eq. (1) and its relation to the
thermoelastic properties of a substance [6], in fields such
as geophysics and biomedicine, this parameter has become
important in itself, to predict the phase behavior of solids at
high pressure [5] and for imaging and characterization of
biological tissues [7], respectively. Because of its impor-
tance and ubiquity, atomistic calculations of the Grüneisen
parameter are carried out routinely, to investigate thermal
properties of materials [8–12], and also to characterize
liquids [13] and their behaviors near critical points [14].
First principles calculations of the thermodynamic

Grüneisen parameter rely on the quasiharmonic approxi-
mation and the following equation [3,9]:

γ ¼
P

kc
k
Vγk

CV
; ð2Þ

where ckV is the specific heat capacity of a harmonic
oscillator with frequency ωk, and γk is the mode
Grüneisen parameter defined as

γk ¼ −
V
ωk

∂ωk

∂V : ð3Þ

Two approaches are used to calculate the mode Grüneisen
parameters. The first one relies on perturbation theory [3],
yielding γk’s expressed in terms of normal mode coordi-
nates and third-order force constants [3,10,15], and for this
reason this cumbersome approach is not used regularly. The
second method stems directly from Eq. (3), and it is based
on the numerical differentiation of phonon frequencies of a
material with respect to volume [8]. This second approach
is straightforward, and it is used routinely to calculate γk’s
and thermal expansion coefficients [via Eq. (1)] [8,11,16].
However, this latter method suffers from two major
technical limitations. First, it involves a reindexing oper-
ation of the phonon frequencies to establish the correspon-
dence between frequencies computed at different volumes.
This task is trivial in the case of simple solids described by
using primitive unit cells (and hence requiring the reorder-
ing of only a few phonon branches per k point), but it can
lead to erroneous assignments and results in the case of
complex materials described by large supercells. Second,
carrying out the numerical derivative in Eq. (3) requires the
calculation of phonon frequencies at (at least three) differ-
ent volumes, within an interval of dynamical stability
of the material of interest [8,11,16]. The smaller this
interval is, the more difficult and less accurate this
numerical operation becomes [11,16]. Because of the
two issues above, it remains a challenge to apply
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Eqs. (1)–(3) and quasiharmonic approximation calculations
to study materials exhibiting anisotropy or disorder, or
anharmonic materials prone to exhibit structural instabil-
ities upon expansion or compression [11,16,17].
In this work, we present a novel method to calculate

mode Grüneisen parameters that overcomes the difficulties
and limitations of existing approaches. In contrast to
current techniques (based on calculating either third-order
force constants or phonon frequencies at different vol-
umes), our method requires the calculation of phonon
frequencies of a material at only the volume of interest,
and it is based on the second-order differentiation of a
corrected stress tensor with respect to normal mode
coordinates. For each mode, this operation yields simulta-
neously all the components of the generalized mode
Grüneisen parameter tensor, and it involves one or a few
total energy calculations with ions at fixed positions. In
comparison with current techniques (which can be used
with both primitive and large unit cells to estimate mode
parameters of a phonon with a wave vector), our method
necessitates the use of large supercells to accommodate
normal mode displacements, and it yields values of mode
Grüneisen parameters of the 3N − 3 phonon modes with
wave vectors constrained by periodic boundary conditions.
For the reasons above, our method is suitable to be applied
to materials systems exhibiting anisotropy, or chemical or
structural disorder, i.e., systems requiring the use of large
supercells to obtain a proper description of their structure.
As demonstrated herein, for such systems our method
surpasses existing techniques in both computational effi-
ciency and reliability of results.
The generalized mode Grüneisen parameters are defined

as follows:

γðνμÞk ¼ −
1

ωk

∂ωk

∂ενμ ¼ −
1

2ω2
k

∂ω2
k

∂ενμ ; ð4Þ

where ενμ is a component of the strain tensor, and the
indexes ν and μ are equal to x, y, or z. In the framework of
the Bohr-Oppenheimer (BO) approximation and, for in-
stance, periodic density functional theory (DFT) calcula-
tions, we can write the nuclear Hamiltonian of a material
system as

H ¼
X
n

p2
n

2Mn
þ VBOðR⃗; fa⃗igÞ; ð5Þ

where VBO is the BO energy surface, Mn and pn are the
mass and momentum of the nth atom, R⃗ is the collective set
of all ionic positions in the periodic cell, and a⃗i are the cell
vectors. In the harmonic approximation, Eq. (5) becomes

H≊XN
n¼1

p2
n

2Mn
þ 1

2

X
n;m

X
ν;μ

uνnΦ
νμ
nmu

μ
m; ð6Þ

where Φνμ
nm is a matrix element of the real space force

constant matrix, and uνn ¼ R⃗ν
n − R⃗ν

n is the displacement of
the nth atom along the ν direction with respect to the
equilibrium position R⃗n. In particular, using a compact
matrix notation, we can write

VhðR⃗0þ u⃗;fa⃗igÞ¼
1

2

X
n;m

X
ν;μ

uνnΦ
νμ
nmu

μ
m

¼1

2
u⃗þΦu⃗¼1

2

X
k

ω2
kq

2
k¼

1

2
q⃗þΩq⃗; ð7Þ

where qk are the normal mode coordinates and q⃗ and u⃗ are
the collective variables of normal coordinates and Cartesian
displacements, respectively. In Eq. (7), Ω is the diagonal
matrix of second-order derivatives over the normal modes
of Vh,

Ω ¼ LþM−1=2ΦM−1=2L; ð8Þ

where M is the diagonal matrix of atomic masses
and L is the matrix of columnwise eigenvectors of
the mass weighted Cartesian force constant matrix,
M−1=2ΦM−1=2, and normal modes coordinates and atomic
displacements are related to each other as

q⃗ ¼ LþM1=2u⃗; ð9Þ

with u⃗ vanishing at the reference ionic configuration R⃗0,
i.e., the collective variable of equilibrium ionic positions
R⃗n. Using the notation introduced above, and considering
that a mode Grüneisen parameter measures the deforma-
tion-induced shift of a phonon frequency with respect to
that of a pure harmonic oscillator, we can write Eq. (4) as

γðνμÞk ¼ −
1

2ω2
k

∂
∂ενμ

∂2½VBO − Vh�
∂q2k

¼ 1

2ω2
k

∂2

∂q2k
�
−
∂VBO

∂ενμ þ ∂Vh

∂ενμ
�
¼ V

2ω2
k

∂2Pνμ

∂q2k ; ð10Þ

with Pνμ a “corrected” stress tensor having the following
expression,

Pνμ ¼ P0
νμ −

1

2V

X
n

ðfνnuμn þ fμnuνnÞ; ð11Þ

where P0
νμðR⃗0 þ u⃗; fa⃗igÞ is the static contribution of the

stress tensor, computed in the absence of quantum and
thermal fluctuations with ions fixed at positions R⃗0 þ u⃗
within a rigid supercell with volume V and cell vectors
fa⃗ig, whereas the summation on the right-hand side
corresponds to the harmonic stress tensor, with fνn being
the Cartesian components of the harmonic force acting on
the nth ion due to the collective displacement u⃗, equal to
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fνn ¼ −
X
m;μ

Φνμ
nmu

μ
m: ð12Þ

We remark that in the case of a pure harmonic crystal, the
summation in Eq. (11) cancels the term P0

νμ, leading to
the correct result of mode Grüneisen parameters identical to
zero. We also remark that the corrected stress tensor
in Eq. (11) is identical (besides terms included to
improve numerical accuracy) to the one derived within a
self-consisted harmonic approximation formalism by
Monacelli et al. in Ref. [18].
Equations (10) and (11) constitute the basis of our new

method to calculate mode Grüneisen parameters of a
material. These equations show that mode Grüneisen
parameters can be obtained by carrying out atomistic
calculations of a solid at a fixed V, without the need of
computing harmonic frequencies and normal modes at
volumes larger and smaller than V. In practice, our method
to calculate mode Grüneisen parameters involves the
following operations. First, optimization of supercell geom-
etry and ionic positions, defining the static equilibrium
configuration of a solid at zero pressure or subjected
to an external stress. Second, calculation of the normal
mode frequencies and coordinates. Third, for each mode
and an amplitude qk, calculation of the energy and internal
stress tensor with ions fixed in a configuration accommo-
dating displacements along the selected normal mode.
Equation (11) is then used to calculate the “corrected”
stress tensor Pνμ, and the mode Grüneisen parameter is
obtained by approximating Eq. (10) with a second-order
central finite difference formula, as follows:

γðνμÞk ≊2V
Pνμ½ζk� − Pνμ½0�

ζ2k
; ð13Þ

where ζk ¼
ffiffiffi
2

p
qkωk. It is to be noted that the formula

above is written accounting that Pνμ½ζk� ¼ Pνμ½−ζk�, and
that Pνμ½0� reduces to the component of the internal stress
tensor at equilibrium P0

νμ. Equation (13) thus shows that,
after computing the normal modes and phonon frequencies,
each mode Grüneisen parameter can be calculated by
carrying out a single total energy fixed-point calcula-
tion (Fig. 1).
To demonstrate the correctness and validity of ourmethod

to calculate modeGrüneisen parameters, we first considered
an energy scheme employing embedded-atom interatomic
potentials [19] to describe a cubic supercell containing 864
Al atoms with the face-centered-cubic structure. Then, we
calculated the isotropic mode Grüneisen parameters using
both our method [Eqs. (10)–(13) and Fig. 1] and the
conventional approach based on calculating phonon
frequencies at different volumes, sorting and assigning
normal modes by using the standard k · p-based approach,
and using first-order finite difference formulas to compute
the γk [Eq. (4)]. The two sets of parameters shown in Fig. 2
demonstrate that our method gives results in excellent
agreement with those obtained by using conventional
methods.
To further corroborate the validity of our method, we

considered a 216-atom cubic cell of cubic Si, and we used a
periodic DFT approach [20] to calculate isotropic mode
Grüneisen parameters by using both our method and the
conventional approach (based on calculating phonon
frequencies at different volumes). In detail, we used density
functional perturbation theory [20] to calculate normal
mode frequencies and coordinates, and all Γ-point calcu-
lations were carried out by using an energy cutoff of 50 Ry,
a norm-conserving pseudopotential [21], and the Perdew-
Burke-Ernzerhof (PBE) parametrization of the exchange
and correlation energy functional [22]. Also in this case,

ωk = 323 cm-1
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FIG. 1. Values of a mode Grüneisen parameter obtained from
Eq. (13) using increasing values of ζk ¼

ffiffiffi
2

p
qkωk. Inset: Values

of the “corrected” pressure times V (in atomic units of energy)
versus ζk. The colored disks indicate that a mode parameter can
be calculated by carrying out a single total energy calculation (red
disk) with ions fixed in a configuration accommodating displace-
ments resulting from a normal mode coordinate equal to qk.
These results were obtained by considering a large supercell of
fcc Al (inset) described by using a classical energy scheme.
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FIG. 2. Mode Grüneisen parameters of fcc Al computed by
using classical interatomic potentials and a cubic supercell
containing 864 atoms. Light blue disks show results obtained
by using the conventional method based on numerical differ-
entiation of phonon frequencies computed at different volumes,
whereas blue circles show parameters computed by using our
method. The absolute average difference between these two sets
of data is 0.06.
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our calculations showed that our method gives results in
excellent agreement with parameters computed by using
the conventional approach (Fig. 3). The mode parameters
shown in Fig. 3 were used to calculate the thermodynamic
Grüneisen parameter as a function of temperature using
Eq. (2). This result shown in Fig. 3 is in agreement with
experimental data of γ obtained from measurements of the
inertial thermoelastic stress produced by pulse heating [2].
Overall, the results in Figs. 2 and 3 demonstrate that our
method to calculate mode Grüneisen parameters is valid,
whereas Eq. (13) and Fig. 1 show that our method is
straightforward and involves simple numerical tasks. In
terms of computational efficiency, the overall computational
cost our method to calculate isotropic mode parameters
is equivalent to approximately 1.5 phonon calculations,
whereas the conventional approach required 3 phonon
calculations.
To demonstrate the advantages of our novel method over

existing approaches, we first considered the case of ScF3, a
cubic material exhibiting negative thermal expansion up to
a temperature of 1100 K [23]. The origin of the negative
expansion of ScF3 has been attributed to the thermally
induced rocking motions of the rigid ScF6 units, corre-
sponding to phonon modes at and near the R4þ and M3þ
points in the Brillouin zone [23]. As discussed by Oba et al.
in Ref. [17], the Grüneisen parameters associated to these
modes cannot be calculated by using the conventional
approach based on numerical differentiation of phonon
frequencies [Eq. (3)]. Small changes of the volume near
equilibrium induce large frequency variations of the R4þ

and M3þ modes, which become rapidly unstable upon
compression [17]. For this reason, calculation of these
mode Grüneisen parameters based on differentiation of
phonon frequencies can lead to unreliable or questionable
values [17,24,25].

We used our method to calculate the isotropic Grüneisen
parameters of the triply degenerate R4þ and M3þ modes of
ScF3. In particular, we used a 2 × 2 × 2 supercell contain-
ing 32 atoms, ultrasoft pseudopotentials for both Sc and F
[20,26], the PBE functional, a 4 × 4 × 4 uniform grid of k
points to sample the Brillouin zone, energy cutoffs of 50
and 410 Ry for the wave functions and electronic charge
density, respectively, and normal modes and phonon
frequencies were calculated by using the finite-displace-
ment approach. With these technical details, we obtained an
equilibrium lattice parameter of 4.062 Å, a static bulk
modulus of 86 GPa, and phonon frequencies of the R4þ and
M3þ modes equal to 36 and 37 cm−1, respectively. These
results are in excellent agreement with recent DFT studies
[17]. As for the mode Grüneisen parameters, our method
yielded values equal to −45 (R4þ) and −43 (M3þ), in good
agreement with values of about −35 estimated by using
third-order force constants computed at 300 K by self-
consistent ab initio lattice dynamical calculations [27].
To further show the advantages of our method, we

calculated the mode Grüneisen parameters of a Mg-Li
alloy, a light material with potential applications in aero-
space, automobile, and portable electronics technologies
[28,29]. In particular, we considered the case of a Mg-Li
alloy containing a small amount of Li, and thus preserving
the hexagonal-close-packed (hcp) structure [28]. In detail,
we used a 72-atom 3 × 4 × 3 hexagonal (folded into an
orthorhombic) supercell of hcp Mg, with 8 Li atoms
replacing Mg at random sites. We used norm-conserving
pseudopotentials for both Mg and Li [20,21], the PBE
functional [22], a 4 × 3 × 3 uniform grid of k points to
sample the Brillouin zone, an energy cutoff of 30 Ry, and
fractional occupation numbers with a smearing temperature
of 0.02 Ry. After a geometry optimization calculation (the
lattice parameters a and c of the alloy reduced, with respect
to those of pristine hcp Mg, by 0.5% and 1.1%, respec-
tively), we used a finite-displacement approach to calculate
normal modes and phonon frequencies, and our method to
calculate mode Grüneisen parameters. The results in Fig. 4
show that at low temperatures, the hcp alloy is prone to
exhibit a larger thermal expansion along the c axis, and that
for temperatures larger than 100 K, the diagonal compo-
nents of the thermodynamic Grüneisen parameters tensor
assume the same value of about 1.4. Figure 4 shows that our
method and Eqs. (10)–(13) allow us to calculate all the
components of the mode-parameters tensor, at no addi-
tional computational cost and without the need of calculat-
ing phonon frequencies of deformed configurations of the
supercell. We underline that to obtain the same results,
conventional approaches would have required a minimum
of 15 phonon calculations, i.e., about 10 times more
computationally costly than our method. These results
demonstrate that our method is suitable to be applied to
large anisotropic materials presenting chemical or struc-
tural disorder, for the study of thermoelastic and even
thermal conductivity [12] properties from first principles.
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FIG. 3. Mode Grüneisen parameters of Si calculated by using
a periodic DFT approach and a cubic supercell containing 216
atoms. Dark yellow disks are used to show parameters obtained
by using the conventional method, whereas red circles show
results obtained by using our method. The absolute average
difference between the two sets of values is 0.05. Inset:
Average Grüneisen parameter versus temperature calculated
by using Eq. (2).
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In summary, we have presented a novel first principles
method to calculate mode Grüneisen parameters. Our
method is straightforward, accurate, and computationally
efficient. It requires the use of large supercells to accom-
modate normal mode displacements, it can be easily
applied to anharmonic materials prone to exhibit dynamical
instabilities such as ScF3, and it allows for the simultaneous
calculation of all the components of the mode Grüneisen
parameters tensor. For these reasons, our method has the
potential to enable studies of thermoelastic properties
(within the quasiharmonic approximation, and in combi-
nation with novel approaches to calculate linear and non-
linear elastic constants [30]) of anisotropic materials,
presenting chemical or structural disorder, such as doped
or defected crystals, metal alloys, and amorphous materials.

We acknowledge the support of the CUNY High
Performance Computing Center and a PSC-CUNY grant
(No. 62651-0050).

[1] O. L. Anderson, Equation of State of Solids for Geophysics
and Ceramic Science (Oxford University Press, New York,
1995).

[2] W. B. Gauster, Phys. Rev. B 4, 1288 (1971).
[3] A. A. Maradudin, Phys. Status Solidi 2, 1493 (1962).
[4] G. Dolling and R. A. Cowley, Proc. Phys. Soc. 88, 463

(1966).

[5] C. A. Murphy, J. M. Jackson, W. Sturhahn, and B. Chen,
Geophys. Res. Lett. 38, L24306 (2011).

[6] D. S. Kim, H. L. Smith, J. L. Niedziela, C. W. Li, D. L.
Abernathy, and B. Fultz, Phys. Rev. B 91, 014307 (2015).

[7] S. Liang, B. Lashkari, S. S. S. Choi, V. Ntziachristos, and A.
Mandelis, Photoacoustics 11, 56 (2018).

[8] N. Mounet and N. Marzari, Phys. Rev. B 71, 205214 (2005).
[9] Z. Wu and R. M. Wentzcovitch, Phys. Rev. B 83, 184115

(2011).
[10] O. Hellman and I. A. Abrikosov, Phys. Rev. B 88, 144301

(2013).
[11] L.-F. Huang, X.-Z. Lu, E. Tennessen, and J. M. Rondinelli,

Comput. Mater. Sci. 120, 84 (2016).
[12] C. H. Lee and C. K. Gan, Phys. Rev. B 96, 035105 (2017).
[13] P. Mausbach, A. Köster, G. Rutkai, M. Thol, and J. Vrabec,

J. Chem. Phys. 144, 244505 (2016).
[14] G. O. Gomes, H. E. Stanley, and M. de Souza, Sci. Rep. 9,

12006 (2019).
[15] J. Fabian and P. B. Allen, Phys. Rev. Lett. 79, 1885 (1997).
[16] L.-F. Huang, N. Z. Koocher, M. Gu, and J. M. Rondinelli,

Chem. Mater. 30, 7100 (2018).
[17] Y. Oba, T. Tadano, R. Akashi, and S. Tsuneyuki, Phys. Rev.

Mater. 3, 033601 (2019).
[18] L. Monacelli, I. Errea, M. Calandra, and F. Mauri, Phys.

Rev. B 98, 024106 (2018).
[19] M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443

(1984).
[20] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,

C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni,
I. Dabo et al., J. Phys. Condens. Matter 21, 395502
(2009).

[21] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
[22] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.

77, 3865 (1996).
[23] B. K. Greve, K. L. Martin, P. L. Lee, P. J. Chupas, K. W.

Chapman, and A. P. Wilkinson, J. Am. Chem. Soc. 132,
15496 (2010).

[24] C. W. Li, X. Tang, J. A. Muñoz, J. B. Keith, S. J. Tracy,
D. L. Abernathy, and B. Fultz, Phys. Rev. Lett. 107, 195504
(2011).

[25] Y. Liu, Z. Wang, M. Wu, Q. Sun, M. Chao, and Y. Jia,
Comput. Mater. Sci. 107, 157 (2015).

[26] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
[27] A. van Roekeghem, J. Carrete, and N. Mingo, Phys. Rev. B

94, 020303(R) (2016).
[28] R. Wu, Y. Yan, G. Wang, L. E. Murr, W. Han, Z. Zhang, and

M. Zhang, Int. Mater. Rev. 60, 65 (2015).
[29] R. H. Taylor, S. Curtarolo, and G. L. W. Hart, Phys. Rev. B

81, 024112 (2010).
[30] T. Cao, D. Cuffari, and A. Bongiorno, Phys. Rev. Lett. 121,

216001 (2018).

50 100 150 200 250 300

0

1

2

3

4

5

6

temperature (K)

γ(ν
μ)

60 100 140 180 220 260
-4

-2

0

2

4

frequency (cm-1)

γ k(ν
μ)

FIG. 4. Thermodynamic Grüneisen parameters tensor of a hcp
Mg-Li alloy versus temperature derived from Eq. (2) and
generalized mode parameters (shown in the inset) calculated
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