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Multiplication and division of the orbital angular momentum (OAM) of light are important functions in
the exploitation of the OAM mode space for such purposes as high-dimensional quantum information
encoding and mode division multiplexed optical communications. These operations are possible with
optical transformations that reshape optical wave fronts according to azimuthal scaling. However, schemes
proposed thus far have been limited to OAM multiplication by integer factors and require complex beam-
copying or multitransformation diffraction stages; a result of the limited phase excursion 2πl around the
annulus of an OAM state expðilθÞ. Based on the key idea that the phase excursion along spirals in the
transverse plane of a vortex is theoretically unlimited, we propose and experimentally demonstrate a simple
yet effective scheme using an azimuth-scaling spiral transformation that can accomplish both OAM
multiplication and division by arbitrary rational factors in a single stage.
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Orbital angular momentum (OAM), as an essential
property of light, has constantly attracted intensive atten-
tion since the realization that a paraxial light field with a
spiral phase structure expðilθÞ carries a definite amount lℏ
of OAM per photon [1], where θ is the azimuthal angle and
integer l is the topological charge. OAM of light not only
enables particle trapping and rotating in optical manipula-
tion [2,3], enhanced resolution in microscopy [4,5] and
rotational Doppler shift in optical metrology [6,7], but
additionally, it endows the photon with a new degree of
freedom (l) with a theoretically unbounded state space,
which can be exploited for various applications such as
high-capacity optical communication [8–10], high-dimen-
sional quantum entanglement [11] and quantum key dis-
tribution [12,13].
Precise generation, manipulation, and detection of OAM

states are critical for OAM-based applications, with gen-
eration and detection having been widely investigated. The
available techniques for generating OAM states include
holograms [14], mode converters [15], spiral phase plates
[16], spin to OAM conversion [17], and integrated vortex
emitters [18], while techniques for simultaneously
detecting different OAM states include Mach-Zehnder
interferometers [19,20], algorithmically designed vortex
gratings [21,22], integrated devices [23], time-resolved
spectral mapping [24], multiplane spatial light modulation
[25], and the simple yet effective optical geometrical
transformations [26–29].
By contrast, challenges still remain in the transformation

and manipulation of OAM states, which are especially
required in both OAM-based optical communication

systems [9,30–32] and high-dimensional quantum infor-
mation systems [33] to realize complex switching and
routing functions. One such scenario is the switching of the
data encoded on a set of OAM modes (or channels) flg to
the set of modes fnlg, with n generally being rational. For
example, assume that the OAM channels fl ¼ 1; 2;…; Ng
in two optical fibers are to be multiplexed and transmitted
in an interlaced fashion through the OAM channels fl ¼
1; 2;…; 2Ng in a third fiber. This requires the operations
flg → f2lg and flg → f2l − 1g on the modes in the first
and the second fibers, respectively, so that they are
converted to even-l and odd-l OAM modes in the third
fiber. To demultiplex back to the original OAM sets, the
inverse operations flg → fl=2g and flg → fðlþ 1Þ=2g
have to be applied, respectively, on the even-l and odd-l
OAM modes in the third fiber which can be discriminated
interferometrically [19]. Such operations may also be
useful in optical data encoding to expand the code space
by inserting redundant states into an otherwise continuous
state space, e.g., to improve error resistance and enable
error correction [34].
The aforementioned functions require the multiplication

of the vortex charges of a set of integer OAM states flg
with a common rational factor n. Being essentially func-
tions between spatial coordinates rather than between
fields, optical geometrical transformations [35] are particu-
larly attractive for implementing l-independent OAM
multiplication that can work for any number of OAM
states, and two such transformations have been employed
so far with certain complexities and limitations. The first
transformation is the log-polar mapping that unfolds the
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annular intensity profile of a vortex expðilθÞ into a
rectangular profile with linear phase. Subsequently, a
fan-out grating produces n copies (for integer jnj > 1) of
this plane-wave state in the form of an elongated rectangle
with n × 2πl phase range. An inverse log-polar mapping
finally folds this rectangle back to an annulus with phase
expðinlθÞ [36]. The scheme is power efficient, but the
cascaded transformation stages add complexity to the
experimental setup and sensitivity to practical misalign-
ment. The second transformation is the circular-sector
mapping which applies a direct azimuthal scaling ðθ →
θ=nÞ to the input OAM state. For integer jnj > 1, an
annulus is mapped to an annular sector of angle 2π=n. With
n such simultaneous transformations on the same phase
mask, n complementary sectors are produced and com-
bined in a complete annulus with phase expðinlθÞ. This
single-stage scheme has lower complexity, however at the
cost of power loss due to complex amplitude modulation
[37] or higher-order diffraction [38] by the multitransfor-
mation phase mask [39]. Moreover, both the above
schemes are limited to OAM multiplication by integer
factors and need a different treatment for OAM division
(jnj < 1) [38,40,41].
An inherent limitation of the above schemes is that the

basic geometrical shape being transformed, namely the
intensity annulus of an OAM state expðilθÞ, restricts
the azimuthal variable to a 2π range and, consequently,
the available phase range to 2πl. As a result, complex
beam-copying or multitransformation diffractive stages
have to be designed in order to accomplish the desired
n-fold multiplication of the phase.
In this Letter, we propose a simpler yet effective single-

stage scheme which achieves both OAM multiplication and
division by an arbitrary rational factor n. The scheme is
inspired by the recently introduced spiral transformation for
high-resolution OAM mode sorting [28,29], which utilizes
the key fact that the azimuthal variable along a spiral in the
plane varies without limits. By applying an azimuth-scaling
spiral transformation θ2 ¼ θ1=n as shown in Fig. 1, the
phase of n spiral turns in the input plane ðr1; θ1Þ is mapped
along one spiral turn in the output plane ðr2; θ2Þ, hence a
vortex with inversely scaled charge l2 ¼ nl1 is created,
which is the key idea behind the proposed method. The
concept works for either jnj > 1 or jnj < 1, without
requiring n to be an integer. Therefore, OAMmultiplication
or division by any rational factor can be achieved, which is
a major difference from previous methods.
The proposed OAM multiplication and division scheme

uses the following azimuth-scaling law, which is derived
from an antianalytic complex mapping [39,42,43]

r2 ¼ cr−1=n1 ; θ2 ¼ θ1=n; ð1Þ

where c and n are scaling factors. ðr1; θ1Þ and ðr2; θ2Þ are
polar coordinates describing spirals in the input and output

planes as shown in Fig. 1. The shape of the spirals is
determined by functions in the form of r ¼ fðθÞ, as for
example r ¼ s expðaθÞ which represents logarithmic spi-
rals (s > 0 is the radial position at θ ¼ 0 and a is the
exponential growth rate). This specific type of spirals is
mapped through the above transformation to spirals in the
output plane which are also logarithmic, namely

r1 ¼ s expðaθ1Þ ⇒ r2 ¼ cs−1=n expð−aθ2Þ: ð2Þ

The general case is examined in Sec. III of the
Supplemental Material [39].
As the polar angle θ1 acts like a position parameter along

the spiral, it varies continuously without limit. This is a
fundamental difference between the proposed spiral trans-
formation and the previous transformations (such as the
log-polar or the circular-sector transformations), where θ1
is the standard polar angle varying along a 2π range. The
unlimited range of the polar angle significantly extends the
phase excursion that is available from the input OAM state,
thus alleviating the need for the complex beam-copying or
multitransformation diffractive stages that previous meth-
ods use in order to accomplish the desired n-fold increase
of the phase. Moreover, the unlimited polar angle along a
spiral can be arbitrarily compressed or decompressed,
which allows our scheme to perform both OAM multipli-
cation and division by any rational factor rather than only
by integers. The advantages of the spiral transformation
scheme come at the cost of an upper limit in power
efficiency equal to minðjnj; jnj−1Þ, which results from
the fact that the spirals are unable to cover the whole area
simultaneously in the input and output plane as shown in
Fig. 1. In OAM multiplication (jnj > 1), the spiral strip
in the input plane covers the entire beam area but is

FIG. 1. The principle of OAMmultiplication and division by an
arbitrary rational factor with the proposed azimuth-scaling spiral
transformation. A specific case of OAM multiplication with the
scaling factor n ¼ 3=2 and the inverse case of OAM division
(multiplication by n ¼ 2=3) are illustrated as an example. The
input OAM wave front is carved into a spiral strip.
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transformed to an output spiral strip with dark gaps
between its turns. As a result, the desired OAM coexists
with a whole spectrum of OAM states and can only be
isolated through low-pass spectral filtering at a power
fraction of jnj−1. In OAM division (jnj < 1), the output
spiral strip covers the entire beam area, while the input
spiral strip has gaps between its turns and utilizes at most a
power fraction jnj of the input OAM state [39].
In order to implement the proposed spiral transformation

[Eq. (1)], a pair of phase masks are required, respectively,
located in the input plane ðr1; θ1Þ and output plane ðr2; θ2Þ,
with a distance d between the two parallel planes. The input
phase mask (the transformer) has a phase modulation
which is obtained by integrating the ray equations under
the transformation Eq. (1) and is expressed as:

Qðr1; θ1Þ ¼
k
d

�
crq1
q

cos ðqθ1Þ −
r21
2

�
; ð3Þ

where k is the wave number and q ¼ 1 − n−1 for brevity.
This is the phase modulation that has to be applied to the
input OAM wave front within a defined spiral strip to
redirect its constituent rays according to the spiral coor-
dinate mapping [Eq. (1)]. Another phase mask (the phase
corrector) is also required at the output plane to remove
both phase Q (only useful for the coordinate transforma-
tion) and the phase acquired during propagation:

Pðr2; θ2Þ ¼ −Qðr1; θ1Þ
− k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22 − 2r1r2 cosðθ2 − θ1Þ þ d2

q
: ð4Þ

After the phase correction, the field E2 at the output point
ðr2; θ2Þ is, within the context of ray optics, found to be
equal to the field E1 of the input OAM state expðilθ1Þ at
the corresponding point ðr1; θ1Þ multiplied by a simple
mapping factor τ21 ¼ −i expðikdÞjnjr1=r2, which has a
trivial constant phase part −i expðikdÞ and an amplitude
part jnjr1=r2 resulting from jE1j2jr1dr1dθ1j ¼
jE2j2jr2dr2dθ2j imposed by the energy conservation.
Therefore, the field at ðr2; θ2Þ is proportional to
expðilθ1Þ ¼ expðinlθ2Þ, which signifies an optical vortex
with charge nl. A thorough analysis of the transformed
field can be found in Secs. VI–VIII of [39].
The theoretical predictions of the spiral transformation

scheme for arbitrary OAM multiplication or division have
been verified by both simulation and experiment.
Numerical simulations have been performed by computing
the diffraction integral under an angular-spectrum
decomposition of the fields, using perfect-vortex beams
as input OAM states [39,44]. Typical values of the in-
volved parameters in the simulation and the experi-
ment are d ¼ 4.95 mm, λ0 ¼ 1550 nm, nquartz ¼ 1.444,
k ¼ 2πnquartz=λ0, a ¼ lnð1.2Þ=ð2πÞ and c ¼ r1þ1=n

0

with r0 ¼ 340 μm ðn > 1Þ, r0 ¼ 280 μm ðn < −1Þ,

r0 ¼ 320 μm ð0 < n < 1Þ, r0 ¼ 533 μm ð−1 < n < 0Þ.
For the experiment, an array of compact OAM multipliers
and dividers with different scaling factors n based on the
above design are fabricated accordingly, as pairs of trans-
missive diffractive optical elements (DOEs) on the two
opposite surfaces of a 4.95-mm-thick quartz plate as shown
in Fig. 2(e). The enlarged images of the transformer and the
phase-corrector DOEs are presented in Figs. 2(c) and 2(d)
for the case n ¼ 3=2, in comparison with the corresponding
phase distributions given by Eqs. (3) and (4) (see Sec. X of
[39] for all demonstrated cases). The devices are charac-
terized using the optical setup as shown in Fig. 2(f). The
right branch comprises a spatial light modulator (SLM)
and a 4f system for producing the input OAM states. The
lower branch includes the compact device and another 4f
system with a pinhole in the intermediate Fourier plane for

FIG. 2. Implementation of the proposed spiral transformation
scheme for arbitrary OAM multiplication and division. (a),
(b) Phase profiles and (c),(d) the corresponding fabricated
diffractive optical elements of (a),(c) the transformer and (b),
(d) the phase-corrector in the case of OAM multiplication with
n ¼ 3=2. (e) A 3 × 4 array of compact OAM multipliers and
dividers with different factors n, whose transformers and phase
correctors are fabricated on the two sides of a 4.95-mm-thick
quartz plate. (f) Schematic of the optical setup for device
characterization. Pol.: polarizer, BS: beam splitter, SLM: spatial
light modulator, NDF: neutral density filter.
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low-pass spectral filtering. An infrared camera detects the
final output beam. A reference Gaussian beam is available
from the upper and left branch for interfering with the
output beam through a beam splitter and revealing its phase
structure based on a quadrature phase-shift interference
method [45].
Figure 3 summarizes the numerical and experimental

results of OAM multiplication with n ¼ 3=2 for input
OAM states with a fixed annular intensity and 0 ≤ l ≤ 6.
The final OAM states are obtained by low-pass spectral
filtering of the output of the spiral transformation stage.
The expected annular vortices with topological charge of
nl are obtained for the values of l for which nl is integer,
namely l ¼ 0, 2, 4, 6. For the other values of l, the filtering
cannot isolate a single OAM state and the output contains a
spectrum of (fractional) topological charges which give rise
to azimuthal intensity variations, hence to a spiral intensity
pattern [39,46,47]. Figure 4 shows the purity of the output
integer OAM states in simulation and in experiment by
performing angular Fourier transform on the output beams
shown in Fig. 3. High mode purity is obtained for these
OAM states with the side mode suppression ratio being

higher than 18 dB in the simulation and 11.5 dB in the
experiment. To the best of our knowledge, this is the first
demonstration of OAM multiplication with a rational
factor.
Further results that demonstrate the ability of the spiral

transformation for OAM multiplication or division with
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arbitrary factors are shown in Fig. 5 and in Sec. XII of [39].
Figure 5(b) shows a case of OAM division with n ¼ 1=2.
The vortex charges of the input and output beams are
revealed as spiral arms in their interference patterns with a
Gaussian beam. In all cases the expected OAM multipli-
cation or division by the factor n is verified. The measured
power efficiencies also agree with the theoretical value
jnj−1 for all the jnj > 1 cases, which further confirms the
theoretical predictions.
In summary, we have proposed a new optical trans-

formation scheme for multiplying or dividing the OAM of
light by an arbitrary rational factor. The key idea is that
spirals in the transverse plane of an optical vortex offer an
extended phase excursion which can be compressed or
decompressed in the azimuthal direction with a single
transformation to obtain an output state with correspond-
ingly scaled OAM. The proposed scheme has particularly
low complexity since it only involves a single transforma-
tion stage with two phase masks. Moreover, the same setup
can perform both OAM multiplication and division by any
rational factor, which is a significant improvement over
previous schemes that use different techniques for multi-
plying or dividing OAM and the multiplication factor is
limited to integer values. The performance of the azimuth-
scaling spiral transformation has been verified by simu-
lation as well as by experiment using homemade compact
OAM multipliers and dividers. The advantages of the
proposed scheme come at the cost of a basic limitation
in power efficiency equal to minðjnj; jnj−1Þ, which is
similar to that of previous methods. A question for future
research remains whether this limit can be surpassed while
keeping the complexity of the setup reasonably low.
Being simple in implementation and able to perform

both OAM multiplication and division by arbitrary rational
factors, the proposed scheme may find applications within
quantum as well as classical photonic information systems
such as OAM-MDM communication systems, and in more
fundamental studies of the OAM of light. The spiral
transformations, as first demonstrated in high-resolution
OAM mode sorting [28,29] and further through the present
work, prove to be a powerful tool for manipulating the
OAM of light. We envisage that further possibilities will
open up in both the classical and the quantum regime if
similar concepts are applied beyond standard quasiplanar
optics such as in continuous transformation media and
optical metamaterials.
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