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10 Boulevard Thomas Gobert, 91120 Palaiseau, France

Julien Javaloyes
Departament de Física and IAC-3, Universitat de les Illes Balears, C/ Valldemossa km 7.5, 07122 Mallorca, Spain

Si H. Pan, Abdelkrim El Amili, and Yeshaiahu Fainman
Department of Electrical and Computer Engineering, University of California San Diego,

9500 Gilman Drive, La Jolla, California 92093, USA

(Received 25 October 2019; accepted 27 April 2020; published 27 May 2020)

Two coupled nanolasers exhibit a mode switching transition, theoretically described by mode beating
limit cycle oscillations. Their decay rate is vanishingly small in the thermodynamic limit, i.e., when the
spontaneous emission noise tends to zero. We provide experimental statistical evidence of mesoscopic limit
cycles (∼103 intracavity photons). Specifically, we show that the order parameter quantifying the limit
cycle amplitude can be reconstructed from the mode intensity statistics. We observe a maximum of the
averaged amplitude at the mode switching, accounting for limit cycle oscillations. We finally relate this

maximum to a dip of mode cross-correlations, reaching a minimum of gð2Þij ¼ 2=3, which we show to be a

mesoscopic limit. Coupled nanolasers are thus an appealing test bed for the investigation of spontaneous
breaking of time translation symmetry in the presence of strong quantum fluctuations.
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How do quantum fluctuations affect nonequilibrium
periodic orbits? This question, intimately related to the
spontaneous breaking of time translation symmetry, has
strongly motivated a large community of physicists in the
last few years. While the spontaneous time symmetry
breaking is well known in classical nonlinear dynamics as
a Hopf bifurcation to limit cycle oscillations [1], its realiza-
tion in the quantum world has been a subject of debate. In a
seminal paper, Wilczek [2] pointed out the existence of
quantum periodic motion in a time-invariant Hamiltonian,
launching a new field of research known as time crystals,
which are the time counterparts of spatial crystals. Since then,
many efforts have been devoted to understand and implement
time crystals in different domains such as condensed matter
and QED systems, with particular emphasis on Floquet time
crystals, which break discrete time translation symmetry
(see, e.g., Ref. [3] for a review). Recently, there has been
growing interest in dissipative time crystals for which the
continuous time symmetry is spontaneously broken [4].
From a historical perspective, a paradigmatic example of

nonequilibrium periodic orbits is the laser. Since the
seminal works on its analogy with second order phase
transitions [5–7], the laser threshold has been successfully
described as a Hopf bifurcation with added noise (see [7]
and references therein). In the thermodynamic limit, the
intracavity photon number—which scales as the inverse of
the spontaneous emission β factor—tends to infinite ([8]

and Sec. VII of [26]) and the system spontaneously breaks
the phase invariance [U(1) symmetry]. For a finite thermo-
dynamic parameter (β−1), however, phase diffusion restores
U(1) and the coherence time becomes finite [9]. In dis-
sipative time crystals, the problem of coherence is related to
the lifetime of crystal phases, which is linked to a closure of a
Liouvillian gap [4] and hence to a dissipative phase
transition [10]. As in the laser case, but also in other optical
systems [11,12], the persistent oscillations are associated
with the spontaneous symmetry breaking since they only
take place in the thermodynamic limit. A number of many
body limit cycles can be classified as dissipative time
crystals [4,13–15]. Limit cycles in microcavities have also
been recently reported in the context of parametric insta-
bilities [16], comb generation [17], and chaos [18]. Yet, an
important open question is whether they survive in the
presence of quantum fluctuations.
In this work, we propose coupled nanolasers [19–21]

as test beds for limit cycles subjected to strong quantum
noise—in this case due to spontaneous emission—and
provide experimental evidence on the existence of limit
cycles with a thousand photons inside the cavities. We
explore intensity oscillations that emerge as mode beating
when the coupled cavity eigenmodes operate simultane-
ously. Specifically, this occurs at a mode switching tran-
sition between the bonding (B) and antibonding (A) modes
of a nanolaser dimer formed by two evanescently coupled
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photonic crystal nanocavities [Fig. 1(a)] as the pump is
increased [22].
Lasers can be described by a quantum master equation

[9,23]. In semiconductor laser physics, much more sim-
plified models have been used in the past—e.g., the
semiclassical theory, which neglects quantum fluctuations
[8]. A more realistic description needs to incorporate
spontaneous emission fluctuations produced by the semi-
conductor emitters such as quantum wells (QWs), which
can be added to the semiclassical model in the form of
Langevin noise terms. Two coupled nanolasers containing

QWs can thus be modeled by the following nonlinear
coupled stochastic differential equations [19,21,22]:

_a1;2¼
�
1þ iα
2

G1;2− κ

�
a1;2þðγþ iKÞa2;1þFa1;2ðtÞ; ð1Þ

_n1;2 ¼ P − γtotn1;2 −G1;2ja1;2j2; ð2Þ
where jai;jj2 ¼ Ii;j and n are normalized as the photon
and carrier numbers in the cavities, respectively; κ is the
cavity loss rate; α the Henry factor; P the pump rate; and
γtot is the total carrier recombination rate. The complex
intercavity coupling constant quantifies both frequency (K)
and loss (γ) splitting as a result of the evanescent coupling.
G1;2 ¼ γkβðn1;2 − n0Þ is the gain, γk is the two-level
radiative recombination rate, and n0 the carrier number
at transparency. FaiðtÞ are Langevin noise terms accounting
for spontaneous emission with rate Rsp ¼ βFPBn21;2=Va,
where B is the bimolecular radiative recombination rate, FP
the Purcell factor, and Va the volume of the active medium.
We make the common assumption of uncorrelated (white)
noise, i.e., hFμðtÞFνðt0Þi¼2Dμνδðt−t0Þ, where Dμν are the
following diffusion coefficients: 2Daia�i

¼ 2Da�i ai
¼ Rsp,

and zero otherwise.. Importantly, the intracavity saturation
intensity is Isat ¼ γtot=γkβ; hence β−1 is a good thermo-
dynamic parameter in the sense of photon number. Three
ranges can be identified: β−1 ≲ 102, 102 ≲ β−1 ≲ 104, and
β−1 ≳ 104, corresponding to the nanoscopic, mesoscopic,
and macroscopic regimes, respectively [24]. In the deep
nanoscopic regime, β−1 ≲ 10, Eqs. (1) and (2) are no longer
valid; a full quantum model is needed, such as coupled
cavity extensions of Ref. [9]. For semiconductor cavities,
β ∼ V−1

a [25]; hence β−1 is also related to the cavity size.
The two linear eigenmodes of Eq. (1) are aB ¼

ða1 þ a2Þ=
ffiffiffi
2

p
and aA ¼ ða1 − a2Þ=

ffiffiffi
2

p
[Fig. 1(a)]. The

dynamics of this system can be separated into two subsets
of variables [21]: the total intensity and carrier number on
one side, and the relative intensities and phases of the
cavities on the other side, which can be recast on the Bloch
sphere as θ ¼ 2 arctanð ffiffiffiffiffiffiffiffiffiffiffi

I2=I1
p Þ ∈ ½0; π� andΦ ¼ ψ1 − ψ2,

where aj ¼
ffiffiffiffi
Ij

p
exp ðiψ jÞ. Remarkably, the x coordinate

of the Bloch sphere is nothing but the mode population
imbalance, x ¼ ðIB − IAÞ=ðIB þ IAÞ, where IB and IA are
the intensities of the two eigenmodes.
Above laser threshold, the laser molecule operates in the

mode with higher net gain, designed to be the B mode.
A switching transition is observed from B to Amodes as the
pump power is ramped up due to stimulated scattering
induced by carrier oscillations [22]. Indeed, Eqs. (1) and (2)
show mode switching mediated by the emergence of a limit
cycle in the thermodynamic limit, β−1 → ∞ [22]. The B
mode loses stability, expelling a limit cycle at a first Hopf
bifurcation [x ¼ 1, Fig. 1(b)]; these oscillations account for
mode beating. The limit cycle amplitude rapidly increases
up to a perfect mode beating in which both modes have the
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FIG. 1. Numerical simulations of mode beating limit cycles in
two strongly coupled nanolasers. (a) Schematics of two evan-
escently coupled laser nanocavities, with coupling strength K.
Bottom frame: SEM image of the fabricated indium phosphide
photonic crystal cavities; right: the two eigenmodes (B: bonding,
A: antibonding) are split in energy. (b) Bloch sphere showing
noiseless limit cycles close to a switching point [Fa1;2ðtÞ ¼ 0 in
Eq. (1)]; blue trajectories correspond to orbits increasing pump-
ing (P=P0, blue labels); other parameters [Eqs. (1) and (2)] are
K ¼ 12κ, γ ¼ 0.05κ, α ¼ 7, γk ¼ 2.2 GHz, γtot ¼ 5 GHz, κ¼
140.84GHz, n0¼1018cm−3×Va with Va¼0.016×10−12cm3.
(c),(d) Ensemble average of the intensity in the cavity 1 for
P=P0 ¼ 6.015; the average is taken over 100 different noise
realizations and the same initial conditions (see text). Insets:
enlargement of a few oscillation periods (left) and histogram of
the limit cycle phase φ (right, color map; average and standard
deviation in black and red lines, respectively). (e),(f) Mean
value and fluctuations of the order parameter as a function of
the pump power P normalized to the transparency pump P0.
(c),(e) β¼1.7×10−5 and Va¼16×10−12 cm−3. (d),(f) β ¼ 0.017
and Va ¼ 0.016 × 10−12 cm3. Other parameters are FP ¼ 1.03
and B ¼ 3 × 1010 cm3 s−1; Pth;B=P0 ¼ 1.4496.
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same intensity (dual-frequency laser), and each cavity
intensity experiences 100%-contrast oscillation [x ¼ 0,
Fig. 1(b)]. When the pump parameter is increased further,
the limit cycle shrinks and coalesces at a second Hopf
bifurcation, leading to a stable fixed point corresponding to
the A mode [x ¼ −1, Fig. 1(b)]. Note that these Hopf
bifurcations break the time translation symmetry. Even
though a second mode (A) turns on, no phase symmetry
breaking takes place since U(1) has already been sponta-
neously broken at the B mode laser threshold.
The limit cycle oscillations are long-lasting solutions of

the mean field limit, which is a well-known nonlinear
dynamical feature: the amplitude decay rate tends to zero.
In the presence of noise, fluctuations increase the decay
rate. We have quantified such an effect through simulations
of the Langevin equations with different β factors account-
ing for different “system sizes.” In Figs. 1(c) and 1(d)
we show the ensemble average of the cavity 1 intensity,
hI1i for β ¼ 1.7 × 10−5 [Fig. 1(c)] and β ¼ 1.7 × 10−2

[Fig. 1(d)]. The initial conditions correspond to a maximum
intensity in cavity 1; defining wðtÞ ¼ yðtÞ þ izðtÞ ¼
AðtÞ exp½−iΩlctþ φðtÞ�, where A and Ωlc are the ampli-
tude and frequency of the limit cycle, respectively, the
initial conditions read φðt ¼ 0Þ ¼ π=2. Figure 1(c) corre-
sponds to a macroscopic cavity in which the effect of noise
on the limit cycle is small, and the amplitude does not
decay in the whole time window used for the calculations.
The interesting situation arises in the mesoscopic regime
[Fig. 1(d)]: we observe a drastic reduction in the decay
time; still, the limit cycle undergoes thousands of oscil-
lations before it dies out. The physical origin of this finite
lifetime is the diffusion of φðtÞ [see insets in Figs. 1(c) and
1(d)], computed as the angle of wðtÞ in a framework that
rotates with Ωlc, i.e., φðtÞ ¼ arg½w expðiΩlctÞ�. It is impor-
tant to point out that the period of oscillations is T ¼
2π=Ωlc ≈ π=K ≈ 0.26 in units of κ−1, corresponding to
Ωlc=2π ≈ 545 GHz. Such a high frequency, combined with
a low output photon number, rules out any direct obser-
vation of the limit cycle. However, we show below that the
limit cycle amplitude A can be quantified through mode
intensity statistics.
By construction, the limit cycle amplitude on the Bloch

sphere of Fig. 1(b) is

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
; ð3Þ

which is the natural order parameter for the formation of the
limit cycle. Equation (3) states that the limit cycle vanishes
for single mode operation, x ¼ �1, and reaches a maxi-
mum order ofA ¼ 1 for the x ¼ 0 limit cycle (Φ ¼ π=2) in
the thermodynamic limit. In Figs. 1(e) and 1(f), we show
hAi and ðΔAÞ2 as a function of the pump. Clearly, hAi
reaches a maximum at P=P0 ≈ 6.02 for β ¼ 1.7 × 10−5

[Fig. 1(e)] with two fluctuation maxima at the bifurcation
points. In the nanolaser case, β ¼ 1.7 × 10−2, hAi still

presents a maximum at the mode switching point, but its
value is smaller, hAi ≈ 0.8, and the pumping range for
nonzero hAi is broadened with respect to the macroscopic
case. This last point is important since the nanolaser regime
enhances the pumping interval of existence of the limit
cycle. Note that the statistics of x and hence of A can be
obtained through the statistics of IB and IA, which we will
experimentally characterize hereafter.
Figure 2(a) shows the experimental time traces of the two

eigenmodes detected in the far field in such a way that their
emission can be spatially separated. Mode intensities are
then simultaneously measured using two 550 MHz APD
photodetectors as the pump power is ramped up. The time
series have been used to reconstruct the statistics of the
mode population imbalance [Fig. 2(b), right axis]. It can be
observed that hxi has a steplike variation with a zero
crossing that we refer to as the switching point, Ps. The full
statistics of x can be used to compute the statistics of A. In
Fig. 2(c), we show the mean value hAi together with the
variance ðΔAÞ2. We observe a maximum of hAi ≈ 0.83 at
the switching point, in good agreement with the Langevin
semiclassical predictions [Fig. 1(f)]. In addition, there is a
peak of ðΔAÞ2 at each side of the switching point, also in
agreement with the model. These statistical features
are indicators of the emergence of a limit cycle, even
though the direct measurement of cavity intensity time
oscillations cannot be done due to the extremely high
oscillation frequency together with the weak (sub-μW)
output signals.

FIG. 2. Experimental time traces as the pump power is
ramped up. (a) Intensity traces for B (blue) and A (red) modes
measured with two APD detectors. Pump ramp duration = 6 ns.
Thick lines: average corresponding to 104 time traces. (b) Second

order correlations (left axis): gð2ÞBBð0Þ (blue), gð2ÞAAð0Þ (red) and

gð2ÞBAð0Þ (green); moments of the mode population imbalance
[hxi (black) and ðΔxÞ2 (grey)] computed using the full statistics
(right axis). (c) Two first moments of the order parameter A:
mean value hAi (blue, left axis) and variance ðΔAÞ2 (yellow,
right axis).
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The dynamics become extremely slow at the switching
point, allowing us to resolve the intensity fluctuations with
our detectors (rise time ¼ 620 ps). This is shown in the time
resolved correlationmeasurements of Fig. 3,where the pump
is a 100-period square waveform (peak power ¼ 690 μW,
duration ¼ 1 μs, repetition rate ¼ 100 kHz). We observe
that the system slowly drifts, inducing a mode switching
at t ∼ 1.14 μs. This drift can be attributed to thermal
effects whose timescale is 1 μs, i.e., much slower compared
to the dynamical phenomena in play. Its quasistatic character
allows us to resolve the correlation functions in time
delay [τ, Fig. 3(b)]. We observe that, before and after the
switching point, the duration of the cross-correlation dip is
limited by the detector response [Figs. 3(c) and 3(d)].
However, the correlation decay time at the switching
point is much longer (1.4 ns). Such a factor ∼3 difference
is a lower bound. We have confirmed this by numerical
simulations that show a slowing down of more than one
order of magnitude (Sec. III, Supplemental Material [26]).
In the limit of very strong coupling, such a critical slowing
down can also be observed in the spectrum of a 1D Fokker-
Planck equation (Sec. VI, Supplemental Material [26]).
Usually, the experimentally accessible quantity is

the photon correlation rather than the order parameter.
Nevertheless, both of them are related. The zero time
delay mode cross-correlations, gð2ÞBAðτ ¼ 0Þ, can be
easily deduced from the two lowest order moments
of x. Under the hypothesis of decorrelated total intensity
I ¼ IB þ IA and x fluctuations, hIxi ¼ hIihxi, it can be
shown that

gð2ÞBA ¼ gð2ÞII
1 − hx2i
1 − hxi2 ; ð4Þ

where we have removed τ ¼ 0 to simplify the notation. We
will further assume that the total intensity fluctuations are

Poissonian; hence gð2ÞII ¼ 1, in agreement with our mea-
surements (see Fig. S2, Supplemental Material [26]). The
probability distribution of x is flat in the mesoscopic limit
(Secs. I and V, Supplemental Material [26]) leading to

hxi ¼ 0 and hx2i ¼ 1=3; hence gð2ÞBA ¼ 2=3, which can be
interpreted as the mesoscopic limit. This theoretical pre-
diction is also in good agreement with our experimental

results. In Fig. 2(b) (left axis), we show gð2ÞAA, g
ð2Þ
BB, and gð2ÞBA.

Note that gð2ÞBA ≈ 0.7 is less than unity at the switching point,
revealing mode anticorrelations. These measurements have
been confirmed using 50 ps resolution single nanowire
single photon detectors in the pulsed pump regime (Sec. II,
Supplemental Material [26]).
The mode cross-correlation minimum, min½gð2ÞBA�, is

strongly influenced by noise. In Fig. 4, we display
numerical simulations decreasing the system size from
β−1 ¼ 5.9 × 104 to 5.9, showing a clear crossover between
the macroscopic and the mesoscopic regimes. Interestingly,
the cross-correlation functions have a double dip structure
in the macroscopic regime, whereas there is a single dip in
the mesoscopic regime, in particular for β ¼ 0.017 corre-
sponding to our experimental situation.
The cross-correlation is related to the limit cycle ampli-

tude as hA2i ≈ gð2ÞBA at the switching point [Eq. (4)].
In addition, neglecting limit cycle amplitude fluctuations,

we easily get hAi ≈
ffiffiffiffiffiffiffi
gð2ÞBA

q
; both are shown in Fig. 4 for

comparison. We point out that gð2ÞBA ¼ 1 corresponds to
the uncorrelated limit; hence the nontrivial statistical

FIG. 3. Experimental time-resolved cross-correlation around
a mode switching transition. (a) Time traces of B (blue) and A
(red) modes (thick lines: average over 100 plateaus). The
switching is induced by a slow thermal drift. (b) Time dependent

correlations gð2ÞBAðt; τÞ; the regions before, near, and after the
switching point are framed in blue, red, and yellow, respectively.

(c) Average of gð2ÞBAðt; τÞ over t within the boxes of (b). (d) Blowup
of the normalized cross-correlation for positive τ.

Nanoscopic

thermodynamic
limit g(2)BA=1

mesoscopic limit
g(2)BA=2/3experiment

Mesoscopic Macroscopic

b
a

5.98 6 6.02 6.04 6.06
0.98

0.99

1

1.01

Nanoscopic

thermodynamic
limit g(2)BA=1

mesoscopic limit
g(2)BA=2/3experiment

Mesoscopic Macroscopic

b
a

5.98 6 6.02 6.04 6.06
0.98

0.99

1

1.01

a

5.5 6 6.5
P/P

0

1

1.5

2

b

FIG. 4. Minimum of cross-correlations (green) and maximum
of the squared mean limit cycle amplitude (blue squares) between
eigenmodes of a laser dimer for increasing system size β−1. Green
line: guide to the eye. Right column: zero time delay intensity

correlations gð2Þij [ði; jÞ ¼ ðB;BÞ: blue, ðA; AÞ: red, and ðB; AÞ:
green lines] as a function of the pump around the mode switching
point, showing a double dip in the macroscopic regime (a) and a
single dip in the mesoscopic regime (b). Red symbol: exper-
imental result.
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information is contained in the cross-correlation depth
(green area in Fig. 4). Since such features are vanishingly
small in the thermodynamic limit [see Fig. 4(a)], they
would most likely be hidden by noise, and no significant
statistical information could be extracted in the macro-

scopic regime. In contrast, gð2ÞAB is substantially less than
one in the mesoscopic regime, thus becoming a good
statistical indicator. Small modal cross-correlations have
already been reported in other photonic systems such as
VCSELs ([32,33] and Sec. V of [26]) or micropillar lasers
([34] and Sec. Vof [26]), but no limit cycle dynamics have
been reported in those examples.
In conclusion, we have shown that mode beating limit

cycles emerge at the mode switching of a nanolaser dimer.
This has been possible thanks to photon statistics mea-
surements, which allowed us to compute the oscillation
amplitude (A). A maximum of hAi is observed at the
switching point, together with two maxima of ΔA at each
side of the transition, which are signatures of limit cycle
bifurcations in the presence of noise, as predicted by a
Langevin semiclassical model. We have shown that the
limit cycle finite lifetime is due to its phase diffusion.
However, while (field) phase diffusion in a laser can be
explained as a Hopf bifurcation with additive noise leading
to a Schawlow-Townes mechanism, in our case the specific
nature of the noise and how it enters into the dynamical
equations might result in a strong departure from such a
theory. We conjecture, though, that our scenario may
support vanishing eigenvalues of the Liouvillian with a
nonzero imaginary part within a quantum master equation
description [4,35]. In addition, we have related the order
parameter to photon correlation measurements and showed
that mesoscopic limit cycles are associated with a 2=3 limit
of the mode cross-correlations. Therefore, a coupled nano-
laser system proves useful as a test bed for the investigation
of limit cycles subjected to quantum noise and the
spontaneous breaking of time translation symmetry.
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73013 Paris, France.

[1] J. Guckenheimer and P. Holmes, Nonlinear Oscillations,
Dynamical Systems, and Bifurcations of Vector Fields
(Springer-Verlag, New York, 1986).

[2] F. Wilczek, Phys. Rev. Lett. 109, 160401 (2012).
[3] K. Sacha and J. Zakrzewski, Rep. Prog. Phys. 81, 016401

(2018).
[4] F. Iemini, A. Russomanno, J. Keeling, M. Schirò, M.

Dalmonte, and R. Fazio, Phys. Rev. Lett. 121, 035301 (2018).
[5] V. DeGiorgio and M. O. Scully, Phys. Rev. A 2, 1170 (1970).
[6] R. Graham and H. Haken, Z. Phys. A 237, 31 (1970).
[7] R. Graham, Macroscopic potentials, bifurcations, and noise

in dissipative systems, in Noise in Nonlinear Dynamical
Systems, Vol. 1, edited by F. Moss and P. V. E. McClintock
(CambridgeUniversity Press,NewYork, 1989), pp. 225–278.

[8] P. R. Rice and H. J. Carmichael, Phys. Rev. A 50, 4318
(1994).

[9] M. O.Scully andM. S. Zubairy,Quantum theory of the laser—
density operator approach, in Quantum Optics (Cambridge
University Press, New York, 1997), pp. 327–361.

[10] F. Minganti, A. Biella, N. Bartolo, and C. Ciuti, Phys.
Rev. A 98, 042118 (2018).

[11] E. Altman, L. M. Sieberer, L. Chen, S. Diehl, and J. Toner,
Phys. Rev. X 5, 011017 (2015).

[12] M. Wouters and I. Carusotto, Phys. Rev. B 74, 245316
(2006).

[13] M. Ludwig and F. Marquardt, Phys. Rev. Lett. 111, 073603
(2013).

[14] M. Schiró, C. Joshi, M. Bordyuh, R. Fazio, J. Keeling,
and H. E. Türeci, Phys. Rev. Lett. 116, 143603 (2016).

[15] J. Jin, D. Rossini, R. Fazio, M. Leib, and M. J. Hartmann,
Phys. Rev. Lett. 110, 163605 (2013).

[16] N. C. Zambon, S. R. K. Rodriguez, A. Lemaitre, A. Harouri,
L. L. Gratiet, I. Sagnes, P. St-Jean, S. Ravets, A. Amo, and J.
Bloch, arXiv:1911.02816.

[17] S. Kim, Y. G. Rubo, T. C. H. Liew, S. Brodbeck, C.
Schneider, S. Höfling, and H. Deng, Phys. Rev. B 101,
085302 (2020).

[18] A. Giraldo, B. Krauskopf, N. G. R. Broderick, J. A.
Levenson, and A.M. Yacomotti, New J. Phys. 22,
043009 (2020).

[19] P. Hamel, S. Haddadi, F. Raineri, P. Monnier, G. Beaudoin,
I. Sagnes, A. Levenson, and A. M. Yacomotti, Nat. Pho-
tonics 9, 311 (2015).

[20] S. S. Deka, S. H. Pan, Q. Gu, Y. Fainman, and A. E. Amili,
Opt. Lett. 42, 4760 (2017).

[21] M.Marconi, J. Javaloyes, P. Hamel, F. Raineri, A. Levenson,
and A. M. Yacomotti, Phys. Rev. X 8, 011013 (2018).

[22] M. Marconi, J. Javaloyes, F. Raineri, J. A. Levenson, and
A.M. Yacomotti, Opt. Lett. 41, 5628 (2016).

[23] N. Takemura, M. Takiguchi, and M. Notomi, arXiv:
1904.01743.

[24] T. Wang, G. P. Puccioni, and G. L. Lippi, Sci. Rep. 5, 15858
(2015).

[25] Y. Yamamoto, S. Machida, and G. Björk, Phys. Rev. A 44,
657 (1991).

[26] See SupplementalMaterial at http://link.aps.org/supplemental/
10.1103/PhysRevLett.124.213602 for additional experimen-
tal and theoretical information, which also includes
Refs. [27–31].

PHYSICAL REVIEW LETTERS 124, 213602 (2020)

213602-5

https://doi.org/10.1103/PhysRevLett.109.160401
https://doi.org/10.1088/1361-6633/aa8b38
https://doi.org/10.1088/1361-6633/aa8b38
https://doi.org/10.1103/PhysRevLett.121.035301
https://doi.org/10.1103/PhysRevA.2.1170
https://doi.org/10.1007/BF01400474
https://doi.org/10.1103/PhysRevA.50.4318
https://doi.org/10.1103/PhysRevA.50.4318
https://doi.org/10.1103/PhysRevA.98.042118
https://doi.org/10.1103/PhysRevA.98.042118
https://doi.org/10.1103/PhysRevX.5.011017
https://doi.org/10.1103/PhysRevB.74.245316
https://doi.org/10.1103/PhysRevB.74.245316
https://doi.org/10.1103/PhysRevLett.111.073603
https://doi.org/10.1103/PhysRevLett.111.073603
https://doi.org/10.1103/PhysRevLett.116.143603
https://doi.org/10.1103/PhysRevLett.110.163605
https://arXiv.org/abs/1911.02816
https://doi.org/10.1103/PhysRevB.101.085302
https://doi.org/10.1103/PhysRevB.101.085302
https://doi.org/10.1088/1367-2630/ab7539
https://doi.org/10.1088/1367-2630/ab7539
https://doi.org/10.1038/nphoton.2015.65
https://doi.org/10.1038/nphoton.2015.65
https://doi.org/10.1364/OL.42.004760
https://doi.org/10.1103/PhysRevX.8.011013
https://doi.org/10.1364/OL.41.005628
https://arXiv.org/abs/1904.01743
https://arXiv.org/abs/1904.01743
https://doi.org/10.1038/srep15858
https://doi.org/10.1038/srep15858
https://doi.org/10.1103/PhysRevA.44.657
https://doi.org/10.1103/PhysRevA.44.657
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.213602
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.213602
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.213602
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.213602
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.213602
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.213602
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.213602


[27] M. B. Willemsen, M. P. van Exter, and J. P. Woerdman,
Phys. Rev. A 60, 4105 (1999).

[28] M. Sondermann, M. Weinkath, T. Ackemann, J. Mulet, and
S. Balle, Phys. Rev. A 68, 033822 (2003).

[29] H. A. M. Leymann, C. Hopfmann, F. Albert, A. Foerster,
M. Khanbekyan, C. Schneider, S. Höfling, A. Forchel,
M. Kamp, J. Wiersig, and S. Reitzenstein, Phys. Rev. A 87,
053819 (2013).

[30] C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S.
Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters,
S. Reitzenstein et al., New J. Phys. 18, 063011 (2016).

[31] S. Holzinger, C. Redlich, B. Lingnau, M. Schmidt,
M. von Helversen, J. Beyer, C. Schneider, M. Kamp,

S. Höfling, K. Lüdge, X. Porte, and S. Reitzenstein, Opt.
Express 26, 22457 (2018).

[32] E. L. Blansett, M. G. Raymer, G. Cui, G. Khitrova, H. M.
Gibbs, D. K. Serkland, A. A. Allerman, and K.M. Geib,
IEEE J. Quantum Electron. 41, 287 (2005).

[33] F. Prati, G. Giacomelli, and F. Marin, Phys. Rev. A 62,
033810 (2000).

[34] H. A. M. Leymann, D. Vorberg, T. Lettau, C. Hopfmann, C.
Schneider, M. Kamp, S. Höfling, R. Ketzmerick, J. Wiersig,
S. Reitzenstein, and A. Eckardt, Phys. Rev. X 7, 021045
(2017).

[35] K. Seibold, R. Rota, and V. Savona, Phys. Rev. A 101,
033839 (2020).

PHYSICAL REVIEW LETTERS 124, 213602 (2020)

213602-6

https://doi.org/10.1103/PhysRevA.60.4105
https://doi.org/10.1103/PhysRevA.68.033822
https://doi.org/10.1103/PhysRevA.87.053819
https://doi.org/10.1103/PhysRevA.87.053819
https://doi.org/10.1088/1367-2630/18/6/063011
https://doi.org/10.1364/OE.26.022457
https://doi.org/10.1364/OE.26.022457
https://doi.org/10.1109/JQE.2004.842312
https://doi.org/10.1103/PhysRevA.62.033810
https://doi.org/10.1103/PhysRevA.62.033810
https://doi.org/10.1103/PhysRevX.7.021045
https://doi.org/10.1103/PhysRevX.7.021045
https://doi.org/10.1103/PhysRevA.101.033839
https://doi.org/10.1103/PhysRevA.101.033839

