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We explore the possibility of very heavy dibaryons with three charm quarks and three beauty quarks,
bbbccc, using a constituent model which should lead to the correct solution in the limit of hadrons made of
heavy quarks. The six-body problem is treated rigorously, in particular taking into account the orbital,
color, and spin mixed-symmetry components of the wave function. Unlike a recent claim based on lattice
QCD, no bound state is found below the lowest dissociation threshold.
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Introduction.—Apart from the atomic nuclei, there is no
evidence, so far, for stable multiquark states in the hadron
spectrum. At best, there are very interesting resonances
which lie above their lowest dissociation threshold.
Sometimes the corresponding fall-apart decay is suppressed,
and a rather narrow resonance is observed. There are several
recent reviews, see, for instance Refs. [1–8].
Several stable multiquarks have been predicted along

the years, based on various mechanisms. The famous
HðuuddssÞ by Jaffe [9] tentatively gets its binding from
coherences in the chromomagnetic sector. The same
mechanism is also at work in other configurations, such
as the anticharmed pentaquark [10–12]. But, when a full
quark model calculation is performed the stability does not
survive the breaking of flavor SU(3) [13,14], nor the
unavoidable dilution of the structure that weakens the
strength of the chromomagnetic terms [15,16].
Another possibility is the combination of two heavy

quarks and two light antiquarks, QQq̄ q̄. Here, there is a
favorable chromomagnetic effect if q̄ q̄ ¼ ū d̄, but the
novelty is the chromoelectric binding that exploits the
breaking of charge conjugation when the quark-to-
antiquark mass ratio M=m departs from unity. This is
the same mechanism that makes the hydrogen molecule
much more stable than the positronium molecule [4].
In recent years, lattice QCD based studies have managed

to reach calculations at almost the physical pion mass.

Thus, the HAL QCD Collaboration has studied dibaryons
containing light or strange quarks establishing the existence
of barely bound ΩΩ [17] and NΩ [18] states close to
the unitary limit. Lattice calculations with heavy quarks are
advantageous over the light counterparts because the two
point correlators are less noisy and the signal to noise is far
better.
Recently, Junnarkar and Mathur [19] reported the first

lattice QCD study of dibaryons with heavy quark flavors.
They evaluated deuteronlike dibaryon structures with
the quark contents ðuucÞðuccÞ, ðsscÞðsccÞ, ðuubÞðubbÞ,
ðssbÞðsbbÞ, and ðccbÞðcbbÞ and quantum numbers
ðIÞJP ¼ ð0Þ1þ. The authors conclude that ðsscÞðsccÞ,
ðssbÞðsbbÞ, and ðccbÞðcbbÞ are clearly below the two-
baryon thresholds. It is important to note that for these
systems the lowest two-baryon threshold is always made of
two spin 3=2 baryons with quark content ðQQQÞðqqqÞ.
The existence of such deep bound states in the heavy quark
sector should be captured in any model having the right
QCD properties in the heavy quark sector. In particular a
constituent model approach should reflect such deep bind-
ing, if it exists [20,21].
Thus, the aim of the present Letter is to revisit the

aforementioned configurations in a full-fledged calcula-
tion considering the internal mixed symmetry components
of the hexaquark wave function, and study whether
or not three c quarks and three b quarks do form a bound
state.
Model and method.—We have calculated the energy of

bbbccc and its threshold using a standard constituent
model. The main assumption, on which we shall come
back in the last section, consists of adopting a pairwise
interaction with a color-octet exchange structure. The
interaction has two terms only, i.e., spin-orbit and tensor
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forces are neglected: a spin-independent or chromoelectric
interaction that reads

Vc ¼ −
3

16

X

i<j

ðλ̃i ⋅ λ̃jÞ ð−a=rij þ brijÞ; ð1Þ

and a spin-spin or chromomagnetic interaction given by

Vs ¼ −
3

16

X

i<j

ðλ̃i ⋅ λ̃jÞðσ⃗i ⋅ σ⃗jÞ
ass
mimj

�
μ

π

�
3=2

expð−μr2ijÞ;

ð2Þ

with a ¼ 0.2=ℏc, b ¼ 0.4ℏc, ass ¼ 2.0, μ ¼ 1.0=ðℏcÞ2,
mc ¼ 1.3 GeV, and mb ¼ 4.66 GeV.
In such potential, the ground state of three quarks

corresponds to a stable baryon. A constant term can be
introduced in Eq. (1), −ð3=16ÞCðλ̃i:λ̃jÞ, but it would shift
each baryon of the threshold by C and every dibaryon by
2C and thus cannot modify the conclusions about the
stability or instability of the latter.
The above potential corresponds to a fit by Semay and

Silvestre-Brac [22]. It is worth emphasizing that the param-
eters are constrained in a simultaneous fit of 36 well-
established meson states and 53 baryons, with a remarkable
agreement with data, as can be seen in Table 2 of Ref. [22].
Notwithstanding, it has been checked that the conclusions
dealing with stability or instability of multiquarks survive
sizable variations of the parameters, and changes in the
functional form adopted for the potential.
The color, spin, and orbital structure of the wave function

has been firstly worked out in a basis ð123Þ-ð456Þ ¼
ðbbbÞ-ðcccÞ, where the Pauli principle is imposed in a
more apparent manner. The color of each cluster is either
the antisymmetric singlet 1 or the pair of mixed-symmetry
octet f8λ; 8ρg, which are symmetric or antisymmetric
under 1 ↔ 2 (or 4 ↔ 5), respectively. The color decuplet
states do not contribute. As for the spin, we have either
S123 ðor S456Þ ¼ 3=2 or 1=2, which are symmetric or
mixed symmetry, respectively. Subsequently, the clustering
ðbbcÞ-ðccbÞ has also been used for checking purposes. In
this case, the wave function has been obtained by the
transformation of the original properly antisymmetrized
wave function in the ð123Þ-ð456Þ ¼ ðbbbÞ-ðcccÞ basis.
The spin-color algebra has also to be transformed into the
new coupling. Let us note that, in contrast to a deuteronlike
dibaryon, the color-spin-radial wave function must be
antisymmetric due to the nonexistence of a flavor-anti-
symmetric component.
In the ground state of the six-quark system, the orbital

wave function is dominated by the components that are
symmetric in both bbb and ccc sets of permutations, but
mixed-symmetric orbital wave functions are also included.
The recoupling of the spins is obvious. The Clebsch-Gordan
coefficients of the color recoupling to an overall singlet are

taken from Ref. [23]. The coupling of two or three mixed-
symmetry components to an overall symmetric or antisym-
metric state is explained, e.g., in Ref. [24]. The variational
wave functions are based on Gaussians of the type

expð−φ=2Þ; φ ¼
X

1≤i<j≤6
aijr2ij; ð3Þ

and appropriate combinations of their permutations [24]. In
practice, the interparticle distances r⃗ij are expressed in
terms of standard Jacobi coordinates which diagonalize
the intrinsic kinetic energy. Such a properly symmetrized
combination of permutations also leads to nondiagonal
Jacobi coordinate products, i.e., x⃗i · x⃗j, that generate non-
zero internal orbital angular momenta in the wave function.
It is safer to proceed by steps. For each state of total spin,

from S ¼ 3 to S ¼ 0, we first considered symmetric orbital
functions associated to color-singlet clusters, afterwards the
admixture of color octet components coupled to mixed-
symmetry spin states was included. In a third stage, the
corrections due to mixed-symmetry orbital components
were analyzed. In principle, especially for S ¼ 1 or S ¼ 0,
the number of coupled components can become large, and
lead to rather delicate numerical calculations. In such a
case, it is wise to introduce the corrections one by one, and
add up the corresponding energy shifts. A similar strategy
is used, e.g., when treating the high partial waves of the
hyperspherical expansion [24].
Results.—We first calculated the energy of the various

baryons bnc3−n, and found without surprise that the lowest
threshold is made of ðbbbÞ þ ðcccÞ. The convexity of the
baryon spectrum when the masses are varied is reviewed,
e.g., in Refs. [24–27]. With the parameters of the model of
Ref. [22] the lowest threshold Ωbbbð3=2þÞ þ Ωcccð3=2þÞ
has a mass of 19.082 GeV. The details are given in Table I.
For the hexaquarks bbbccc, the energy was always

found above the threshold, even when color octet and/or
mixed-symmetry orbital and spin wave functions are
introduced for both three-quark clusters. More precisely
as follows:
Spin 3: As the spin wave function is fully symmetric, we

have targeted an additional antisymmetric wave function
made of mixed-symmetry orbital and color components.
Spin 2: Besides the wave function mentioned above

we included antisymmetric wave functions made of

TABLE I. Masses, in GeV, of baryons within the constituent
model of Ref. [22].

Baryon S ¼ 3=2 S ¼ 1=2

bbb 14.253 � � �
ccc 4.829 � � �
bbc 11.162 11.137
ccb 8.023 7.972
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mixed-symmetry orbital, color, and spin components for one
of the subclusters of three identical quarks. Such a compo-
nent resembles two baryons with S ¼ 1=2 and S ¼ 3=2.
Spin 0 and 1: Besides the components mentioned above

we included antisymmetric wave functions made of mixed-
symmetry orbital, color, and spin components for both
subclusters of three identical quarks. Such a component
would take account of internal states made of two S ¼ 1=2
baryons.
The negligible contribution coming from mixed sym-

metry components of the wave function can be easily
understood by calculating their energy if considered sep-
arately. Thus, the S ¼ 3 state containing mixed symmetry
color and orbital components has an energy of 19.869 GeV,
to be compared to the 19.098 GeV of the color-orbital
antisymmetric-symmetric component. Similarly, the S ¼ 1
state containing mixed symmetry orbital-color-spin com-
ponents has an energy of 19.838 GeV, to be compared to
the 19.098 GeV of the lowest component. They are far
enough to have a rather weak coupling with the dominant
state. Moreover, the adjustment of the parameters always
led to very small and even vanishing values for the aij
coefficients with i ∈ f1; 2; 3g and j ∈ f4; 5; 6g. This is a
clear signature of a converged variational calculation in the
absence of bound states.
Note that in the case of equal masses mb ¼ mc, there is

no bound state either, and this can be understood by an
argument of symmetry breaking that was already developed
for comparing 3̄3 and 66̄ tetraquarks with equal masses
[28]. Let, indeed,

H ¼
XN

i¼1

p⃗2
i

2m
þ

X

1≤i<j≤N
gijVðrijÞ; ð4Þ

be an Hamiltonian with attractive pair potential V, and
the cumulated strength fixed, say

P
gij ¼ N=ðN − 1Þ=2.

The energy is maximal for equal strengths gij ¼ 1 and is a
concave function of these variables gij, as they enter H
linearly. So, schematically, the more asymmetric the fgijg
distribution, the lower the energy. Clearly, for N ¼ 6, one
can hardly find a distribution more asymmetric than that of
the threshold with g12 ¼ g23 ¼ g13 ¼ g45 ¼ g56 ¼ g46 ≠ 0
and the other gij ¼ 0, and in the regime of heavy quarks
such as b and c, the hyperfine corrections play a minor role
and cannot generate binding by themselves. Our numerical
calculations also show that the results based on a frozen set
of color coefficients are not significantly modified by the
coupling of the various allowed channels.
Discussion and outlook.—The main conclusion of our

accurate six-body calculation is the absence of binding for
bbbccc and similar configurations. This outcome is based
on an explicit potential model and several variants of this
potential. The principal reason for this instability is the
constraint of antisymmetrization in both the b and the c

sectors, which prohibits the mixing of all possible con-
figurations corresponding to a color-neutral hexaquark of
given spin. As a toy model, we calculated a configuration
bb0b00cc0c00 with the same masses as before and the same
potential, Eqs. (1) and (2), but nonidentical b-type and
c-type of quarks. Then a binding of about 100 MeV is
obtained.
A related investigation consists of questioning the

prescription

V ¼ −
3

16

X

i<j

λ̃i:λ̃jvðrijÞ; ð5Þ

where the normalization is such that vðrÞ is the quarkonium
potential. For the linear part of the interaction, say
vðrÞ ¼ σr, a challenging alternative consists of building
the minimal string or set of strings linking the quarks. For a
baryon, this leads to the well-known Fermat-Torricelli
construction

V ¼ σ min
J

ðr1J þ r2J þ r3JÞ; ð6Þ

which gives an energy slightly higher than the additive rule
Eq. (5). However, for tetraquarks, if one generalizes Eq. (6)
by a combination of flip-flop and connected strings,
namely,

V ¼ σmin
J
ðr3 − r1 þ r4 − r2; r3 − r2 þ r4 − r1; VYYÞ;

VYY ¼ min
JK

ðr1J þ r2J þ rJK þ r3K þ r4KÞ; ð7Þ

then the potential becomes much more favorable as
compared to the additive rule, and binding of QQ0q̄q̄0 is
obtained already for a mass ratio M=m ¼ 1. However, an
important restriction has to be enforced: the quarks and
the antiquarks should be different, i.e., not submitted to the
Pauli principle, even so equal masses are adopted, for the
sake of simplicity [29].
If the same strategy of a string confinement is adopted

for six quarks, with the potential resulting from a mini-
mization over various connected strings and flip-flop
configurations, then binding is also obtained [30]. For a
purely linear interaction vðrÞ¼r, and a mass ratioM=m¼1
associated with a light mass m ¼ 1, it was found that the
hexaquark QQQqqq is bound by about 0.491 in such
dimensionless units. If one restores the appropriate scales,
namely mc ≃ 1.5 GeV and a string tension σ ≃ 0.2 GeV2,
this corresponds to about 0.1 GeV. But, again, the pos-
sibility of optimizing the strings continuously as the quarks
move requires a full waiver of antisymmetrization [30].
In other words, a constituent model leaned on the string
confinement predicts bb0b00cc0c00 to be stable with a binding
energy of about 100 MeV. This state disappears when the b
and the c become identical.
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To conclude, potential models, when treated seriously,
do not lead to a proliferation of stable multiquarks. In
particular, there is no evidence for any stable super-heavy
hexaquark of the type bbbccc.
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Phys. Rev. Lett. 119, 202001 (2017).

[21] E. J. Eichten and C. Quigg, Heavy-Quark Symmetry Implies
Stable Heavy Tetraquark Mesons QiQjq̄kq̄l, Phys. Rev.
Lett. 119, 202002 (2017).

[22] C. Semay and B. Silvestre-Brac, Diquonia and potential
models, Z. Phys. C 61, 271 (1994).

[23] A. Alex, M. Kalus, A. Huckleberry, and J. von Delft,
A numerical algorithm for the explicit calculation of SU(N)
and SL(N,C) Clebsch-Gordan coefficients, J. Math. Phys.
(N.Y.) 52, 023507 (2011).

[24] J.-M. Richard, The nonrelativistic three-body problem for
baryons, Phys. Rep. 212, 1 (1992).

[25] A. Martin, J. M. Richard, and P. Taxil, About convexity
properties of the baryon mass spectrum, Phys. Lett. B 176,
224 (1986).

[26] J. M. Richard and P. Taxil, Ground state baryons in the
nonrelativistic quark model, Ann. Phys. (N.Y.) 150, 267
(1983).

[27] S. Nussinov and M. A. Lampert, QCD inequalities, Phys.
Rep. 362, 193 (2002).

[28] J.-M. Richard, A. Valcarce, and J. Vijande, Few-body quark
dynamics for doubly heavy baryons and tetraquarks, Phys.
Rev. C 97, 035211 (2018).

[29] J. Vijande, A. Valcarce, and J.-M. Richard, Adiabaticity and
color mixing in tetraquark spectroscopy, Phys. Rev. D 87,
034040 (2013).

[30] J. Vijande, A. Valcarce, and J. M. Richard, Stability of
hexaquarks in the string limit of confinement, Phys. Rev. D
85, 014019 (2012).

PHYSICAL REVIEW LETTERS 124, 212001 (2020)

212001-4

https://doi.org/10.1088/1674-1137/40/4/042001
https://doi.org/10.1016/j.physrep.2016.05.004
https://doi.org/10.1016/j.physrep.2016.05.004
https://doi.org/10.1016/j.physrep.2016.11.002
https://doi.org/10.1007/s00601-016-1159-0
https://doi.org/10.1016/j.ppnp.2016.11.003
https://doi.org/10.1016/j.ppnp.2017.08.003
https://doi.org/10.1103/PhysRevLett.38.195
https://doi.org/10.1103/PhysRevLett.38.195
https://doi.org/10.1103/PhysRevLett.38.617
https://doi.org/10.1016/0370-2693(87)90055-4
https://doi.org/10.1016/0370-2693(87)91244-5
https://doi.org/10.1016/0370-2693(87)91244-5
https://doi.org/10.1103/PhysRevD.40.2340
https://doi.org/10.1103/PhysRevD.40.2340
https://doi.org/10.1103/PhysRevD.33.2043
https://doi.org/10.1103/PhysRevD.33.2043
https://doi.org/10.1016/j.physletb.2019.01.031
https://doi.org/10.1016/j.physletb.2019.01.031
https://doi.org/10.1103/PhysRevD.38.298
https://doi.org/10.1103/PhysRevD.38.298
https://doi.org/10.1103/PhysRevLett.110.222002
https://doi.org/10.1103/PhysRevLett.120.212001
https://doi.org/10.1016/j.physletb.2019.03.050
https://doi.org/10.1103/PhysRevLett.123.162003
https://doi.org/10.1103/PhysRevLett.123.162003
https://doi.org/10.1103/PhysRevLett.119.202001
https://doi.org/10.1103/PhysRevLett.119.202002
https://doi.org/10.1103/PhysRevLett.119.202002
https://doi.org/10.1007/BF01413104
https://doi.org/10.1063/1.3521562
https://doi.org/10.1063/1.3521562
https://doi.org/10.1016/0370-1573(92)90078-E
https://doi.org/10.1016/0370-2693(86)90954-8
https://doi.org/10.1016/0370-2693(86)90954-8
https://doi.org/10.1016/0003-4916(83)90009-X
https://doi.org/10.1016/0003-4916(83)90009-X
https://doi.org/10.1016/S0370-1573(01)00091-6
https://doi.org/10.1016/S0370-1573(01)00091-6
https://doi.org/10.1103/PhysRevC.97.035211
https://doi.org/10.1103/PhysRevC.97.035211
https://doi.org/10.1103/PhysRevD.87.034040
https://doi.org/10.1103/PhysRevD.87.034040
https://doi.org/10.1103/PhysRevD.85.014019
https://doi.org/10.1103/PhysRevD.85.014019

