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Family-Vicsek Scaling of Roughness Growth in a Strongly Interacting Bose Gas
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Family-Vicsek scaling is one of the most essential scale-invariant laws emerging in surface-roughness
growth of classical systems. In this Letter, we theoretically elucidate the emergence of the Family-Vicsek
scaling even in a strongly interacting quantum bosonic system by introducing a surface-height operator.
This operator is comprised of a summation of local particle-number operators at a simultaneous time, and
thus the observation of the surface roughness in the quantum many-body system and its scaling behavior
are accessible to current experiments of ultracold atoms.
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Introduction.—Dynamic scaling is a hallmark of spatio-
temporal scale invariance, which plays a pivotal role in
uncovering universal aspects behind complicated nonequili-
brium phenomena [1,2]. The typical examples are critical and
coarsening dynamics [3-5], in which essential information
such as dimension and symmetry of a model classifies
universality of the dynamics. Such universal dynamics has
been widely observed in both classical [6-9] and quantum
systems [10-17], being an arena for foundations of non-
equilibrium statistical mechanics.

Stochastic surface growth is one of the long-standing
universal dynamics discussed in classical nonequilibrium
phenomena, where the roughness of the growing surface
shows universal spatiotemporal scale invariance [18].
Consider a surface height A(x,?) in a one-dimensional
(1D) system with the linear size L. Then, the roughness
w(L, 1) is quantified as the standard deviation of i(x, 7) from
its spatial average. For a wide variety of stochastic processes,
the roughness obeys a dynamic scaling law called the
Family-Vicsek (FV) scaling [19,20] [see Figs. 1(a) and 1(b)]

Po(r<r);
LY (rr<t)

w(L,t) = s™*w(sL, s°t) { (1)

with a constant s. Here, ¢* is a saturation time proportional
to L%, and @, 3, and z = a/ are power exponents featuring
the universality of a stochastic surface growth model. The
typical models are the Kardar-Parisi-Zhang (KPZ) model
[21] and the Edwards-Wilkinson (EW) model [22], whose
universal exponents are shown in Fig. 1(c). This kind of
universality in stochastic surface growth has been extensively
explored in various classical systems in the community of,
not only physics [23-29], but also mathematics [30] and
biology [31,32].
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It is then natural to ask whether or not such universal
fluctuation dynamics appears in a relaxation process trig-
gered by a parameter quench in quantum systems. Recent
theoretical works study the KPZ universality class in
quantum magnets by using the spin spatiotemporal correla-
tion function [33-35]. The similar scaling behavior emerges
for the spatiotemporal correlation function of the density and
phase fluctuations in a Bose-Einstein condensate, calculated
by means of the (stochastic) Gross-Pitaevskii equation
[36—43]. However, the effect of quantum fluctuations is
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FIG. 1. Family-Vicsek scaling and its exponents. (a) Time
evolution of the surface roughness w(L, ) for two different system
sizes (L > L,). The surface roughness grows in time and is finally
saturated after the saturation time #*. (b) Dynamic scaling of w(L, 7).
When we normalize the ordinate and the abscissa by L* and L?, all
curves collapse to a single one. The saturation time ¢* is scaled as L*
with z = a/f. (c) Exponents of Kardar-Parisi-Zhang (KPZ),
Edwards-Wilkinson (EW), and Bose-Hubbard models (BHM)
(> 1 and v~ 1/2) with the filling factor v. This Letter finds
the exponents of the BHM under the strong repulsive interaction.
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yet to be clarified in these works: the former considers
maximally mixed states, i.e., infinite-temperature states,
whereas the latter are within the mean-field approximation.
In addition, it is nontrivial whether the universal FV scaling
of the surface roughness occurs for far-from-equilibrium
relaxation dynamics. This is important for our understanding
of quantum thermalization in isolated systems, which is
related to the foundation of statistical mechanics.
Experiments of ultracold atoms [44-51] have observed the
thermalization processes, but such long-time universal
growth of fluctuations is little known.

In this Letter, we study fluctuation growth dynamics in a
1D strongly interacting Bose-Hubbard model (BHM) from
the perspective of the FV scaling of the surface roughness.
We use the roughness instead of the correlation function
because the roughness in the quantum system can be
defined only by a local quantity and hence is easy to be
observed experimentally. In fact, employing analogy
between fluctuating hydrodynamics and stochastic surface
growth [52-55], we can introduce a surface-height operator
composed of local particle-number operator in the BHM.
By using the surface height extended to the quantum
system, we calculate the surface roughness, demonstrating
the emergence of the FV scaling in the isolated quantum
many-body system. All the initial states used in this Letter
are pure states, and thus our findings are obtained from the
quantum dynamics triggered by purely quantum fluctua-
tions. We have demonstrated two possibilities of the FV
scaling exponents depending on the filling factor v, which
are summarized in Fig. 1(c). We argue that the exponents of
the high-filling system follow the EW class, while the low-
filling (close to 1/2) system belongs to an unconventional
class. Furthermore, considering the isotropic Heisenberg
spin chain as a related model, we obtain a signature of the
KPZ class.

We comment on the relation between this Letter and
previous studies on quantum transport [33—35]. The pre-
vious works on transport phenomena have evaluated z
(which also appears in the FV scaling) using different-time
correlation functions and have discussed ballistic, diffusive,
and anomalous transport. On the other hand, these corre-
lation functions do not directly exhibit the FV scaling.
This is in stark contrast with our roughness, which can be
expressed as a sum of equal-time correlation functions as
described later. To the best of our knowledge, the FV
scaling shown here has, in fact, not been reported in the
context of quantum transport.

Theoretical model and setup.—We consider an N-boson
system trapped in a 1D optical lattice, which is well
described by the BHM [56-58]. The Hamiltonian is
given by

where b ; and 13; are the annihilation and creation operators
at the jth site, respectively, J is a hopping parameter, U is
an interaction coupling parameter, and M is the number of
lattice sites. We assume the periodic boundary condition.

We introduce a surface-height operator to define surface
roughness in the BHM. The key idea is the emergence of
the KPZ scaling in classical fluctuating hydrodynamics,
where the correlation function of the density fluctuation
6p(x,1) shows a similar scaling law in a correlation
function of 0,A(x, 1) in the KPZ equation [52-55]. From
this analogy, we propose the following integral quantity as
a surface height in the fluctuating hydrodynamics:

/ ' Sp(y, t)dy. (3)

Extending Eq. (3) to the 1D BHM, we introduce the
following surface-height operator for the quantum discrete
system:

hi(0) = S 16 (0bi(1) - o). )
k=1

where v =N/M is a filling factor. Then, the surface
roughness w,(#) for the fluctuation of /;(r) is defined by

with the spatially averaged surface height h,, (1) =
M

j=1
average with an initial state. This roughness can be expressed
as a summation of the equal-time correlation functions for
the particle-fluctuation operator b, (£)b; (1) — v.

In what follows, we consider the BHM with the strong
repulsive interaction (J < vU), which allows one to
truncate the local Fock states into a few ones because
the fluctuations of the particle number should be sup-
pressed. Then, the BHM can be effectively described by
spin models depending on the filling factor v. Below, we
investigate the roughness dynamics for high- (v > 1) and
low-filling (v < 1) cases. The high-filling case can be
solved by means of the SU(3) truncated Wigner approxi-
mation (TWA) method if v satisfies vJ < U, whereas the
low-filling case is exactly solvable using the Jordan-Wigner
transformation.

Results (high-filling case).—We study the surface-
roughness growth when the filling factor v is much higher
than unity. Because of the strong interaction, we can
truncate the local Fock states into |v+ 1), |v), [v—1).
Employing the truncated states, we can rewrite the original
Hamiltonian (2) as the effective spin-1 model [59-62]

(fzj(t)> /M. Here, the bracket means a quantum
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with the spin-1 operator S”J‘ (4 = x,y,z). The derivation of
this model is given in the Supplemental Material [63]. In
the spin representation, the particle-number fluctuation at
the jth site is expressed by S%, and thus the surface-height
operator (4) reads NOEDY S5(t). In a restricted solid-
on-solid model [66], the same surface height is introduced
for mapping from the model to a quantum spin chain in an
imaginary-time formalism.

The surface-height distribution is constructed by the
mapping rule that the eigenvalues 1,0, and —1 of :9; are
assigned to diagonally upward, horizontal, and diagonally
downward lines, respectively (see Supplemental Material
[63]). This kind of mapping is originally developed in the
simple exclusion processes [67—70], where the surface height
is given by a time integral of currents. Defining the current

operator I; = zJ(b b l—b] 1b])/h we can derive a sim-

ilar relation for the BHM: /;(t) = [¢[To(t,) =1, (2))]dty,
which is obtained by mtegratmg the Heisenberg equation for
h ;- This is almost same as the surface height in the simple

exclusion processes except for 1 o and suggests that there is
a closer connection between the quantum roughness dynam-
ics and the classical processes.

We numerically solve the Schrodinger equation with (6)
using the SU(3) TWA method [71] and calculate the surface
roughness w,(M,t). The numerical method works well
under the condition vJ <« U, which is discussed in the
Supplemental Material by comparing with the exact
numerical result [63]. The initial condition is chosen as
the Mott state

1

7)) (7)

| W1n1 =

,’:1&

Jj=

with the vacuum |0).

Figure 2 shows the snapshots of SZ and h at different
times in a single trajectory of the TWA calculatlon from
which we find that the surface-height distribution shows
clear growth of the large-scale fluctuations in time, whereas
the spin distributions (particle-number fluctuations) do not
grow. The surface-height dynamics looks similar to sto-
chastic surface growth in classical models.

We numerically calculate w,(M,t) and find that the
roughness grows with increasing t and M as shown in
Fig. 3. The FV scaling is expressed by w,(M.t) =

“w,(sM, s°t). Substituting s = M./ M with the reference
system size M s = 32 into this scaling relation, we obtain

Wq(M’ t) = (M/Mref)awq[Mref7 t(M/Mref)_z]' (8)
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FIG. 2. Snapshots for the Weyl representations of (main panel)
h ; and (inset) 3‘] at different times in a single trajectory of the
TWA calculation with vJ/U = 0.1. We denote these representa-
tions by S’; and fzj. The time is normalized by = = #/vJ. While
the spin distributions exhibit no significant structures by eye, the

distribution of the surface height clearly grows with the large-
scale fluctuations.

Normalizing the ordinate and the abscissa in the inset of
Fig. 3 by (M/M,;)* and (M /M )?, respectively, we find
that the curves for different system sizes collapse to a single
function as in the main panel of Fig. 3, which is the definite
hallmark of the FV scaling. The extracted exponents are
given by (a, f,z) = (0.517 + 0.030,0.255 + 0.012,2.07 £
0.20), which are almost identical to the exponents of the
EW class [see Fig. 1(c)]. Here, we obtain the values of
the exponents by using Eq. (8) and fitting the numerical data
for 2 < t/7 < 100 to c#’ with a constant c. The details of
extracting the exponents are given in the Supplemental
Material [63]. Here, we emphasize that the roughness growth
in isolated quantum systems free from noises is nontrivial
because, in classical systems, stochastic noises play an
essential role. For example, when the noise term is absent,

M =32
S: 100
=
=
=
=
=
§
107!
107 1072 107 10° 10! 10? 10%
(t/7)/ (M Myes)*
FIG. 3. Time evolution of w,(M,t) for the effective spin-1

Hamiltonian (6) with vJ/U = 0.1. The system sizes are M = 32,
64, 128, and 256, and the curves are obtained using 1000
samples. The ordinate and the abscissa are normalized by
(M/M)* and (M/M,)*. All the curves show the FV scaling
with the extracted exponents a = 0.517 + 0.030, f = 0.255 +
0.012, and z = 2.07 4= 0.20. The way to extract them is described
in the Supplemental Material [63]. The roughness w, (M, t) obeys
the power-law growth and the exponent is close to 1/4. (Inset)
Raw numerical data calculated by the SU(3) TWA method.
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the classical EW model becomes a diffusive equation, which
does not show the roughness growth.

We also investigate the dependence of the dynamics on
the initial state and still find the same power-law growth,
details of which are given in the Supplemental Material [63].
Such a FV scaling is not found for the fluctuations of 3‘;

Note that the initial dynamics (z/7 < 0.5) shows the
different type of growth. We expect that this regime
strongly depends on the initial state and is nonuniversal
because the timescale is shorter than the hopping time z.
Thus, it is natural that the data in the region do not obey the
FV scaling.

Next, we consider dynamics under the condition vJ ~ U,
in which the SU(3) TWA calculation is not valid. In small
systems, we find a signature of the power-law growth in the
roughness. However, because the time region having the
power-law-like behavior is short, we cannot confirm the clear
FV scaling. This result is described in the Supplemental
Material [63].

Results (low-filling case).—We consider the BHM with
the half filling v = 1/2. Owing to the strong repulsive
interaction, the bases of the local Fock states can be
reduced to |0) and |1). As a result, the Hamiltonian (2)
becomes the XX model [72]

M
Hyy = =27 (3%,,8% +8,,8) +const.  (9)
=1

TPe spAin-l /2 operatorsA fv;’(({ =x,y,z) are givAeflAby § =
(bT+b;)/2, § =—i(bl —b;)/2, and 5 =blb;—1/2,
which satisfy relation  [§%, §f | =
i6; Zy eaﬂyfv?. The particle-number fluctuation is given
by 3;, and thus the surface-height operator (4) reduces to

the commutation

~

h; =%, ;8. Similar to the high-filling case, we can
construct the surface-height distribution by assigning an up
(down) spin to a diagonally upward (downward) line [63].
As an initial state, we use a staggered state given by

M/2

Wini) = Hz;gj—ll(»’ (10)
j=1

where M is assumed to be even. Under this setup, we
exactly solve the Heisenberg equation with Eq. (9) by
employing the Jordan-Wigner transformation [72] and
calculate the exact time evolution of the surface roughness
(5). The details of the algebraic calculations is given in the
Supplemental Material [63].

Figure 4 shows the exact time evolution of w,(M, 1) for
different system sizes, which demonstrates growth of the
surface roughness. Normalizing the ordinate and the
abscissa in a similar manner to Eq. (8), we find that all
the different curves collapse to a single function except
for the very early and late stages of the dynamics.

M =32
M =064
M =128
— M =256
— M =512
£0.489

< 100

f

5@ 100
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wy( M, £)/(M/M,

107!
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(t/7")/(M/My)*

FIG. 4. Time evolution of w, (M, ) in the XX model (9) starting
from the staggered initial state (10). The ordinate and the abscissa
are normalized by (M/M;)* and (M/M)?. The surface
roughness shows the power-law growth up to the saturation
time, after which small oscillations emerge. Except for the very
early stage, the growth of the surface roughness shows the FV
scaling. The extracted exponents are o = 0.500 =4 0.003,
f =0.489 +£0.004, and z = 1.00 &+ 0.01. (Inset) Raw data cal-
culated by the exact solution. The time is normalized by
7 =n/2J.

The extracted power-law exponents are (@, 4, z) = (0.500 £
0.003,0.489 +0.004,1.00 £ 0.01). We also investigate
the dependence of the exponents on the filling factor v
and confirm that the similar exponents emerge in the late
dynamics, unless v is far from 1/2, as described in the
Supplemental Material [63]. As far as we know, any classical
models do not have these exponents, which suggests that this
FV scaling belongs to an unconventional universality class.

Here, we particularly consider the specific staggered
state (10) as an initial condition because the initial rough-
ness should be small. We also calculate for other initial
states and still find that the FV scaling robustly appears as
long as the initial roughness is small enough and the filling
fraction is not too small [63].

Discussion.—As summarized in Fig. 1(c), the exponent
a=1/2 seems to be model independent. It can be
analytically derived using the eigenstate thermalization
hypothesis (ETH) [73-76] and the cluster decomposition:
lim,_ o, w2(M, t) ~ C(M + 1)/2, where C is the constant.
Thus, in a large system, we obtain & = 1/2. The details of
the derivation are given in the Supplemental Material [63].
Note that this argument itself cannot explain @ = 1/2 in
the XX model since the derivation is based on the ETH,
which is not valid in the free-fermion model. However, the
essence of the derivation is the translational invariance and
no long-range order, and thus we derive @ = 1/2 even in
the XX model if the two assumptions are valid [63]. As for
the exponent 3, we have not analytically obtained the value
and leave it for future work.

Next, we discuss the KPZ class in the isotropic
Heisenberg (IH) model, which is a simple extension of
the XX model (9). While this model is outside the
framework of the BHM, it appears in many condensed-
matter contexts and is a prototypical model for statistical
mechanics. The Hamiltonian is given by
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FIG. 5. Time evolution of w,(M, t) in the isotropic Heisenberg
(IH) model (11) starting from the staggered initial state. When M
is larger than 40, the roughness growth shows a signature of 1/3
power law. We perform the calculations using the ITensor
Library [77].

M
Hyyp o= =27 (85,85 + 8,8 455,89, (11)

Jj=1

We numerically solve the model using the matrix product
state technique and then find a signature of the KPZ class
as shown in Fig. 5, which shows the time evolution of
the roughness calculated by the surface-height operator
h = “_1 8%. The roughness growth obeys a power-law-
like behavior with # = 1/3 in the time region [1, 3], where
the results for M = 40 and 80 overlap. We leave it for a
future study to confirm the exponents for larger system
sizes and longer timescales.

Finally, we discuss possible experiments for observing
the FV scaling. The surface-height operator (4) is the
summation of the local particle-number operator at a
simultaneous time. Thus, in the low-filling case, the
observation of the roughness is easier than that of spatio-
temporal correlation functions by utilizing quantum gas
microscopes. Experiments in ultracold atomic gases have
already observed thermalization processes in the low-filling
case starting from the staggered state [49], and thus the FV
scaling in Fig. 4 can be detectable. Another promising test
bed is a Rydberg system, in which the XX model is
realizable in a highly controlled manner and the particle-
number fluctuations can be observed [78,79]. On the other
hand, in the high-filling case, current experiments may not
have adequate resolution for detecting one particle dynam-
ics, and thus it may be challenging to observe the FV
scaling.

Conclusions and prospects.—We have theoretically
studied the surface-roughness dynamics in the strongly
interacting 1D Bose gas by introducing the surface-height
operator in the BHM and then have demonstrated the
emergence of the FV scaling in an isolated quantum many-
body system. The extracted exponents in the high-filling
case correspond to the EW class, while in the low-filling
case the exponents are found to be unconventional with no
corresponding classical models.

As future works, it is interesting to consider quantum
thermalization in isolated systems from the viewpoint of

the surface-roughness growth. The relation between simple
exclusion processes and the quantum roughness growth can
open an interesting avenue for connecting quantum ther-
malization dynamics and classical stochastic processes. It is
also interesting to investigate the relation with universal
dynamics for certain nonlocal quantities such as entangle-
ment entropy and operator spreading [80-83], which are
in stark contrast to our finding because the surface-height
operator is a summation of local operators. As another
direction, it is important to pursue further connections
between classical and quantum roughness growth by
focusing on higher-order cumulants of surface fluctuations,
which may reveal the Tracy-Widom random matrix uni-
versality characteristic of the KPZ classes [23-29].
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