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We consider the number N θAðθÞ of eigenvalues eiθj of a random unitary matrix, drawn from CUEβðNÞ,
in the interval θj ∈ ½θA; θ�. The deviations from its mean, N θAðθÞ − E½N θAðθÞ�, form a random process as
function of θ. We study the maximum of this process, by exploiting the mapping onto the statistical
mechanics of log-correlated random landscapes. By using an extended Fisher-Hartwig conjecture
supplemented with the freezing duality conjecture for log-correlated fields, we obtain the cumulants of
the distribution of that maximum for any β > 0. It exhibits combined features of standard counting statistics
of fermions (free for β ¼ 2 and with Sutherland-type interaction for β ≠ 2) in an interval and extremal
statistics of the fractional Brownian motion with Hurst index H ¼ 0. The β ¼ 2 results are expected to
apply to the statistics of zeroes of the Riemann Zeta function.
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Characterizing the full counting statistics of the fluctua-
tions of the number N of 1d fermions in an interval is
important in numerous physical contexts, both for ground
state and dynamical properties. It appears, e.g., in shot
noise [1], in fermion chains [2,3], in interacting Bose gases
[4], in nonequilibrium Luttinger liquids [5], in trapped
fermions [6–8], and for studying related observables, such
as the entanglement entropy [9–11] or the statistics of local
magnetization in quantum spin chains [12]. An equivalent
problem can be formulated as counting eigenvalues of large
random matrices (RM). As is well known since Dyson’s
work [13], such eigenvalues behave as classical particles
with 1D Coulomb repulsion at inverse temperature β > 0.
Namely, consider a unitary N × N matrix U and denote the
corresponding unimodular eigenvalues as zj ¼ eiθj ,
j ¼ 1;…; N, with phases θi ∈� − π; π�. Then for any given
β > 0 one can construct the so-called circular β ensemble
CUEβðNÞ in such a way that the expectation of a function
depending only on the eigenvalues of U will be given by

EðFÞ ¼ cN
YN
j¼1

Z
π

−π
dθi

Y
1≤j<k≤N

jeiθj − eiθk jβF; ð1Þ

where F≡ Fðθ1;…; θnÞ. For β ¼ 2 such matrices can be
thought of as drawn uniformly according to the correspond-
ing Haar’s measure on UðNÞ, whereas for a generic β > 0
the explicit construction is more involved, see Ref. [14].
For any β > 1, the right-hand side (r.h.s.) of Eq. (1) equals
the quantum expectation value of F in the ground state
of N spinless fermions, of coordinates θi on the unit
circle, described by the Sutherland Hamiltonian [15]

H ¼ −
P

ið∂2=∂θ2i Þ þ
P

i<jfβðβ− 2Þ=8sin2½ðθi − θjÞ=2�g.
For β ¼ 2, Eq (1) thus describes noninteracting fermions,
while for β ≠ 2 the fermions interact via an inverse square
distance pairwise potential.
Let us now define the number of eigenvalues or

fermions, N θAðθÞ, in the interval θj ∈ ½θA; θ� as

N θAðθÞ ¼
XN
j¼1

½χðθ − θjÞ − χðθA − θjÞ�;

χðuÞ ¼
�
1; u > 0

0; u < 0
: ð2Þ

As a function of θ this is a staircase with unit jumps
upwards at random positions θj ∈ ½θA; θ�. The mean slope
(i.e., the mean density of eigenvalues or fermions) being
constant, the mean profile is E½N θAðθÞ� ¼ Nðθ − θAÞ=2π.
In a given random matrix realization or sample one
can define the deviation to the mean, δN θAðθÞ ¼
N θAðθÞ − E½N θAðθÞ�, and study it as a random process
as a function of θ, i.e., as a function of the length of the
interval θ − θA, see Figs. 1 and 2. From the view of such a
process, the standard results on fermion counting statistics
[2], encoding the full distribution of δN θAðθÞ for a fixed
value of θ, is a very local information. Such information is
clearly insufficient for understanding various non-
local properties of the process, such as characterizing
maximal deviation of the staircase from its mean, i.e.,
maxθ∈½θA;θB� jN θAðθÞ − E½N θAðθÞ�j. After normalization
this is the Kolmogorov-Smirnov (KS) statistics, an
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outstanding open problem for spectra of random matrices
[16], [17].
In this Letter we study the value distribution separately

for the maximum (and, equivalently, the minimum) of the
centered process by explicitly calculating the cumulants of
the probability density function (PDF) for the maximum
value defined as

δN m ¼ max
θ∈½θA;θB�

fN θAðθÞ − E½N θAðθÞ�g ð3Þ

on an interval ½θA; θB� ⊂� − π; π�, of a fixed length
l ¼ θB − θA. To derive the PDF of δN m in the limit
N ≫ 1 we will show that for scales larger than 1=N the
process δN θAðθÞ is very close to a special version of a 1D
log-correlated Gaussian field, the so-called fractional
Brownian motion with Hurst index H ¼ 0, denoted as
fBm0, defined in Ref. [18] and whose extrema where
investigated recently [19,20]. However, it turns out that the
relation to fBm0 alone is insufficient to fully determine the
statistics of δN m. Namely, we will demonstrate that
although the process δN θAðθÞ for large N ≫ 1 is very

close to the fBm0 at different points, the non-Gaussian
features which characterize its single-point statistics show
up in a nontrivial way in the PDF of its maximum δN m.
These single-point features are inherited from the discrete
nature of the number of fermions or eigenvalues as
exemplified, e.g., in fermion counting statistics [2].
We now describe our main findings by first assuming

that the Dyson parameter is rational and can be represented
as β=2 ¼ s=r where s and r are mutually prime, and
relaxing this assumption later on. We find that, for any fixed
interval, the mean value of the maximum δN m defined in
Eq. (3) exhibits, for N → ∞, the universal behavior of the
log-correlated fields [21–24]:

2π

ffiffiffi
β

2

r
EðδN mÞ ≃ 2 logN −

3

2
log logN þ cðβÞl ; ð4Þ

where cðβÞl ¼ Oð1Þ is an unknown l-dependent constant.
The variance for the maximum δN m exhibits to the leading
order the extensive universal logarithmic growth typical for
pinned log-correlated fields [19], on top of which we can
evaluate the corrections of the order of unity:

EcðδN 2
mÞ ≃

2

βð2πÞ2 ½2 logN þ C̃ðβÞ
2 þ C2ðlÞ�: ð5Þ

Finally, the higher cumulants converge to a finite limit as
N → ∞:

EcðδN k
mÞ ≃

2k=2

βk=2ð2πÞk ½C̃
ðβÞ
k þ CkðlÞ�; ð6Þ

where the constants CkðlÞ ¼ Oð1Þ depend on the length l
of the interval and will be given below in two limiting

cases. The l-independent constants C̃ðβÞ
k for k ≥ 2 are

given by

C̃ðβÞ
k ¼ dk

dtk

����
t¼0

log½AβðtÞAβð−tÞ�; ð7Þ

where

AβðtÞ ¼ r−t
2=2

Yr−1
ν¼0

Ys−1
p¼0

Gð1 − p
s þ

νþit
ffiffi
2
β

p
r Þ

Gð1 − p
s þ ν

rÞ
: ð8Þ

Here GðzÞ denotes the standard Barnes function satisfy-
ing Gðzþ 1Þ ¼ ΓðzÞGðzÞ, with Gð1Þ ¼ 1. Note that all the

odd coefficients C̃ðβÞ
2kþ1 vanish. Specifying for β ¼ 2, one

has A2ðtÞ ¼ Gð1þ itÞ, leading to C̃ð2Þ
2 ¼ 2ð1þ γEÞ and

C̃ð2Þ
4 ¼ −12ζð3Þ. Notably, using (7), (8), we were able to

obtain a formula for the C̃ðβÞ
k as a single infinite series [25],

which shows that they are smooth as a function of the
FIG. 2. A single realization of δN−πðθÞ for the full circle θ ∈
½−π; π� for β ¼ 2 and N ¼ 200.

FIG. 1. Constructing an instance of δN0ðθÞ for θ ∈ ½0; π� for
β ¼ 2 and N ¼ 20. Left: eigenvalues λ ¼ eiθi . Right: counting
staircase (top), with mean subtracted (bottom).
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Dyson parameter β, thus relaxing the assumption of ration-

ality. As discussed below, the factors AβðtÞ, hence C̃ðβÞ
k , are

intimately but nontrivially related to the cumulants of the
number of fermions (free for β ¼ 2 and with Sutherland-
type interaction for β ≠ 2) in a mesoscopic interval of the
circle.
By contrast the factors CkðlÞ are β independent and

originate from the problem of the maximum of a fBm0 on
the interval ½θA; θB�. For the l-dependent constants we
obtain an explicit formula in two cases:
(i) maximum over the full circle l ¼ 2π.—In that case

½θA; θB� ¼� − π; π� and we find for any k ≥ 2

Ckð2πÞ ¼ ð−1Þk dk

dtk

����
t¼0

log

�
Γð1þ tÞ2Gð2 − 2tÞ
Gð2 − tÞ3Gð2þ tÞ

�
; ð9Þ

which is related to the fBm0 bridge on � − π; π� studied
in Ref. [19];
(ii) maximum over a mesoscopic interval 1=N ≪

l ≪ 1.—For k ≥ 2 we obtain in this regime

CkðlÞ ≃ 2 loglδk;2 ð10Þ

þð−1Þk d
k

dtk

����
t¼0

�
2Γð1þ tÞ2Gð2−2tÞ

Gð2þ tÞ2Gð2− tÞGð4− tÞ
�
: ð11Þ

This result is related to the fBm0 on an interval, with one
pinned and one free end, studied in Ref. [19]. Note that the
variance depends logarithmically on l at small l, whereas
higher cumulants have limits as l → 0. Note that the l → 0
limit is expected to provide the L ≫ 1 asymptotic for
statistics of the maximum of N θAðθÞ in intervals of the
order 2πL=N, comparable with the mean eigenvalue
spacing. The universal statistics of CUEβ eigenvalues at
such local scales is described by the so called sine-β
process [26] and the associated counting function has been
studied in [27].
Finally, addressing the question of the location of the

maximum in Eq. (3), θm ∈ ½θA; θB�, let us define
ym ¼ ðθm − θAÞ=l. For the mesoscopic interval, we predict
the PDF of ym to be symmetric around 1

2
, with Eðy2mÞ ¼

17=50 and Eðy4mÞ ¼ 311=1470, thus deviating from the
uniform distribution. For the full circle we find a uniform
distribution for θm [28]. However, joint moments for the
position and value of the maximum show the effect of
pinning at θ ¼ θA (see details in Ref. [25]).
To elucidate the relation to fBm0, let us recall that the

process δNθAðθÞ is exactly given by the difference [25]

δN θAðθÞ ¼
1

π
Im log ξNðθÞ −

1

π
Im log ξNðθAÞ; ð12Þ

where ξNðθÞ ¼ detð1 − e−iθUÞ is the characteristic poly-
nomial (CP). As shown in Ref. [29] for β ¼ 2 (see Ref. [30]
for general β > 0) the joint probability density of

Im log ξNðθÞ at two distinct points θ1 ≠ θ2 converges as
N → þ∞ to that of a Gaussian processWβðθÞ of zero mean
and covariance

E½Wβðθ1ÞWβðθ2Þ� ¼ −
1

2β
log

�
4sin2

�
θ1 − θ2

2

��
; ð13Þ

a particular instance of the 1D log-correlated Gaussian
field. Since Eq. (12) implies that δN θAðθ ¼ θAÞ ¼ 0 in any
realization, the relevant object is the pinned log-correlated
process closely related to fBm0. The log-correlated fields
being highly singular always require a regularization to
study their value distribution. The imaginary parts of the
log ξNðθÞ for N ≫ 1 provides such a natural regularization
[30–33], being asymptotically a random process W, which
shares the covariance (13) but with a finite variance
E½WðθÞ2� ¼ β−1 logN þOð1Þ. Via Eq. (12) this provides
the well-known asymptotic of the eigenvalues or fermions
number variance: E½δN 2ðθÞ� ≃ ð2=βπ2Þ logN. We shall
see, however [25], that naively replacing the difference
δN θAðθÞ with its Gaussian approximation 1=π½WβðθÞ−
WβðθAÞ� (related to the bosonization of the fermionic
problem) is not sufficient for characterizing the maximum
of the process.
Gaussian fields characterized by a logarithmic covari-

ance appear in chaos and turbulence [34], branching
random walks and polymers on trees [21,22], multifractal
disordered systems [35,36], two-dimensional gravity
[37,38]. Early works on their extrema revealed a connec-
tion to a remarkable freezing transition [21,22,35]. Through
exact solutions, it led to predictions for the PDF of the
maximum value of a log-correlated field on the circle and
on the interval [39,40], involving the freezing duality
conjecture (FDC) (see Ref. [20] for an extensive discus-
sion). This led to further results in theoretical and math-
ematical physics [23,41–45] and probability [24,46–54].
While the log-correlated context of random CP attracted a
lot of attention [30,48–50,55–62], none of these studies yet
addressed the eigenvalue or zeros counting function in the
intervals l ¼ Oð1Þ.
To study the maximum of the random field δN ðθÞ we

follow Refs. [20,39,40,55,56] and introduce a statistical
mechanics problem of the partition sum:

Zb ¼
N
2π

Z
θB

θA

dϕe2πb
ffiffiffiffiffiffi
β=2

p
δN θA

ðϕÞ; ð14Þ

The “inverse temperature” is equal to −2πb
ffiffiffiffiffiffiffiffi
β=2

p
, and we

choose b > 0 since we are studying here the maximum
retrieved from the free energy F for b → þ∞ as

δN m ¼ lim
b→þ∞

F ; F ¼ 1

2πb
ffiffiffiffiffiffiffiffi
β=2

p logZb: ð15Þ

To study the statistics of the associated free energy we start
with considering the integer moments of Zb given by
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E½Zn
b� ¼

�
N
2π

�
n
Z

θB

θA

e−b
ffiffiffiffiffiffi
β=2

p P
n
a¼1

Nðϕa−θAÞ
Yn
a¼1

dϕa

× E

�YN
j¼1

e2πb
ffiffiffiffiffiffi
β=2

p P
n
a¼1

½χðϕa−θjÞ−χðθA−θjÞ�
�
: ð16Þ

The expectation value in Eq. (16) over the CUEβðNÞ
computed using Eq. (1) has the form E½QN

j¼1 gðθjÞ�, where
we defined

log gðθÞ ¼ 2πb
ffiffiffiffiffiffiffiffi
β=2

p Xn
a¼1

½χðϕa − θÞ − χðθA − θÞ�: ð17Þ

This can be further rewritten for any ϕa; θ; θA ∈� − π; π�
with ϕa > θA as

log gðθÞ ¼ b
ffiffiffiffiffiffiffiffi
β=2

p �Xn
a¼1

ϕa − nθA

þ n arg eiðθA−θþπÞ −
Xn
a¼1

arg eiðϕa−θþπÞ
�
; ð18Þ

where we define the arg function as

arg eiϕ ¼
�

ϕ −π < ϕ ≤ π

ϕ − 2π π < ϕ ≤ 3π:
ð19Þ

For β ¼ 2, E½QN
j¼1 gðθjÞ� ¼ det1≤j;k≤N ½gj−k� is a Toeplitz

determinant, where gp ¼ R
π
−πðdθ=2πÞe−ipθgðθÞ is the asso-

ciated symbol, and gðθÞ according to Eqs. (18)–(19) has
jump singularities. The corresponding asymptotics as
N → ∞ is given by the famous Fisher-Hartwig (FH)
formula [63] proved rigorously in Ref. [64]. A general
rational β extension of the FH formula has been conjectured
in Ref. [65]. Specifying the expressions in Ref. [65] to our
case gives for N → þ∞ and nb2 < 1

E½Zn
b� ≃

�
N
2π

�
n
Nb2ðnþn2ÞjAβðbÞj2njAβðbnÞj2

×
Z

θB

θA

Y
1≤a<c≤n

j1 − eiðϕa−ϕcÞj−2b2

×
Y

1≤a≤n
j1 − eiðϕa−θAÞj2nb2

Yn
a¼1

dϕa; ð20Þ

where the function AβðbÞ is defined in Eq. (8). Had we used
instead an approximation replacing the difference δN θAðθÞ
in the large-N limit with the logarithmically correlated
Gaussian process WβðθÞ defined via Eqs. (12)–(13), we
would reproduce the Coulomb gas factors in Eq. (20) but
miss the factors AβðbÞ; see Ref. [25]. Hence, this product
encapsulates the residual non-Gaussianity of the process.

Let us first discuss the simplest case n ¼ 1when Eq. (20)
can be interpreted, via Eq. (14), as giving

Eðe2πbδN θA
ðθÞÞ ≃ N2b2 jAβðbÞj4

�
4sin2

θ − θA
2

�
b2

: ð21Þ

This formula can be interpreted as the generating function
for the full counting statistics for the number of Sutherland-
model fermions in an interval of size θ − θA, which seems
not to be addressed in the literature apart from the free-
fermion case β ¼ 2 [2,66] and β ¼ 4 [67].
Further progress is possible in the two cases when the

Coulomb integrals in Eq. (20) can be explicitly calculated.
(i) Full circle θA ¼ −π, θB ¼ π.—In that case the

Coulomb integral is known as the Morris integral [68]
leading to

E½Zn
b� ≃

�
N
2π

�
n
Nb2ðnþn2ÞjAβðbÞj2njAβðbnÞj2

×Mðn; a ¼ −nb; bÞ; ð22Þ

where Mðn; a; bÞ is defined as Eq. (14) in Ref. [19]. This
result is valid in the high temperature phase with nb2 < 1.
From this expression for integer moments there is a well-
defined procedure to obtain the double-sided Laplace
transform (DSLT) of the free energy first in the high
temperature phase b < 1 via an analytic continuation.
Defining t ¼ −bn we obtain

Eðe−2π
ffiffiffiffiffiffi
β=2

p
ðF−F 1ÞtÞ ≃ N−tQþt2AβðtÞAβð−tÞ

× Γð1þ tbÞ GbðQ − 2tÞGbðQÞ3
GbðQ − tÞ3GbðQþ tÞ ;

ð23Þ

where F 1 is a constant [69] and Q ¼ bþ 1=b and GbðxÞ is
the generalized Barnes function, see Eq. (44) in Refs. [40]
and [70]. We note that if we multiply both sides of the
equation by Γð1þ t=bÞ, the r.h.s. is invariant by duality
b → 1=b, since formally GbðzÞ ¼ G1=bðzÞ. According to
the FDC [20,40] we obtain the DSLT in the low temper-
ature phase b > 1. The result can be written as

Eðe−2π
ffiffiffiffiffiffi
β=2

p
F tÞΓ

�
1þ t

b

�
¼ Eðe−2π

ffiffiffiffiffiffi
β=2

p
δN mtÞ; ð24Þ

where the r.h.s. is our main result; i.e., the DSLTof the PDF
of δN m for the full circle [71]

Eðe−2π
ffiffiffiffiffiffi
β=2

p
δN mtÞ ≃ N−2tþt2ectAβðtÞAβð−tÞ

×
Γð1þ tÞ2Gð2 − 2tÞ
Gð2 − tÞ3Gð2þ tÞ ; ð25Þ
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which, according to Eq. (15), is the b → þ∞ limit of the
left-hand side of Eq. (24). Here c ¼ 3

2
log logðNÞ þ c0 and

c0 is a constant that we cannot determine by this method.
Expansion of Eq. (25) around t ¼ 0 leads to the large N
asymptotics (4)–(6) for the cumulants, together with the

predicted values for the coefficients C̃ðβÞ
k in Eq. (7) and

Ckð2πÞ in Eq. (9). The Ckð2πÞ equal, up to a factor ð−1Þk,
the cumulants Ck given in Ref. [19] for the fBm0 bridge,
checked against numerics there for k ¼ 2, 3, 4. These
coefficients are studied in more details in Ref. [25].
(ii) Mesoscopic interval.—A similar calculation gives the

maximum over a mesoscopic interval 1=N ≪ l ≪ 2π.
Relegating the details to Ref. [25] we simply quote our
second main result, the DSLT of the PDF of δN m for the
small interval limit of small l ≪ 1:

Eðe−2π
ffiffiffiffiffiffi
β=2

p
δNmtÞ ≃ ðNlÞ−2tþt2ectAβðtÞAβð−tÞ;

Γð1þ tÞ2 2Gð2 − 2tÞ
Gð2þ tÞ2Gð2 − tÞGð4 − tÞ ; ð26Þ

where c ¼ 3
2
log logN þ c00. Expansion around t ¼ 0

leads to the same coefficients C̃ðβÞ
k , which are thus inde-

pendent of l [as can be seen already from Eq. (16)] and to
the result for CkðlÞ in Eq. (10), again related to the ones for
the fBm0 on an interval given and numerically checked
in Ref. [19].
In conclusion, we obtained the cumulants of the maxi-

mum of the deviation of the counting function from its
mean on an interval, for eigenvalues of random unitary
matrices and for free and interacting fermions on the circle.
They inherit features both from the fBm0 log-correlated
field and from the fermionic full counting statistics. Finally,
our result for the distribution of δN m provides a first step
to study the Kolmogorov-Smirnov statistics for the count-
ing staircases, which would further require the joint
PDF of the maximum and minimum (usually nontrivially
correlated [72]).
The results for the mesoscopic interval are expected to be

universal for a broader class of random matrix ensembles,
as well as for fermions on a lattice in the dilute limit [73].
Finally, it is natural to conjecture that for β ¼ 2 universality
extends to describing the statistics of the counting stair-
cases for the nontrivial zeroes tn of the Riemann zeta-
function ζð1=2þ itÞ in mesoscopic intervals of the critical
line t ∈ R. Such zeroes are known to be extremely faith-
ful to the random matrix statistics when analyzed in
appropriate scales [74] underlying a fruitful line of appli-
cations of associated CP to understand ensuing features of
ζð1=2þ itÞ [29,30,75–78].
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