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Distributed quantum information processing is based on the transmission of quantum data over lossy
channels between quantum processing nodes. These nodes may be separated by a few microns or on
planetary scale distances, but transmission losses due to absorption and/or scattering in the channel are the
major source of error for most distributed quantum information tasks. Of course, quantum error correction
(QEC) and detection techniques can be used to mitigate such effects, but error detection approaches have
severe performance limitations due to the signaling constraints between nodes, and so error correction
approaches are preferable—assuming one has sufficient high quality local operations. Typically, perfor-
mance comparisons between loss-mitigating codes assume one encoded qubit per photon. However, single
photons can carrymore than one qubit of information and so our focus in this Letter is to explorewhether loss-
based QEC codes utilizing quantum multiplexed photons are viable and advantageous, especially as photon
loss results in more than one qubit of information being lost. We show that quantum multiplexing enables
significant resource reduction, in terms of the number of single-photon sources, while at the same time
maintaining (or even lowering) the number of 2-qubit gates required. Further, our multiplexing approach
requires only conventional optical gates already necessary for the implementation of these codes.
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There are many active approaches being pursued in the
development of quantum technologies, including those
associated with imaging and sensing [1–3], communication
[4–9], and computation [10–15]. What has become clear is
that many of these will be distributed in nature [5] and, as
such, it will be essential to share quantum information
between the remote nodes, regardless of whether those
nodes are separated on the atomic or planetary scales
[16–18]. This distributed nature means we are going to
require both a quantum interface between matter and
photonic qubits and a photonic bus to transfer such
information between nodes [19]. However, real implemen-
tations will suffer from losses, which will dramatically
affect the performance of the quantum protocols in which
such devices are being used. Mechanisms must be devel-
oped to mitigate such detrimental effects.
There are quite a number of routes available to offset loss

effects, ranging from the development of lower loss fibers
to more efficient quantum information coding. The latter
route is quite appealing as it can be used with current
technology and is likely to be more compatible with our
existing infrastructure. There is a well-known set of loss-
based quantum detection and error correction codes that
can be used in this situation. In [20] they discuss a simple
quantum network scenario in which the quantum multi-
plexing (QM) of photonic degrees of freedom allows one to
design a single-step combined entanglement distribution

and error detection protocol with improved entanglement
generation rates, using fewer physical (photons and quan-
tum memories) and temporal resources. However, their
performance is still limited by the probabilistic nature of the
various quantum operations and the resulting necessary
heralding signals.
Quantum error correction codes (ECCs) naturally avoid a

heralding bottleneck, with example loss-based codes
including the quantum parity [21], cat [22], binomial
[23], Reed-Solomon [24], surface [25], and Gottesman-
Kitaev-Preskill (GKP) codes [26]. They allow us to
approach the deterministic transmission of quantum infor-
mation over a lossy channel, as long as those total losses do
not exceed a certain threshold (50% at most) [27,28].
Typical encodings use either the polarization or time bin
degrees of freedom, but are not particularly resource
efficient as they require a large number of single photons.
The creation of reliable single-photon sources has proved
challenging since the generation probability does not
exceed 70% [29–32], whereas, on the contrary, single-
qubit gate fidelities can reach 99% [33–35]. Another
limiting factor comes from 2-qubit gates, which require
longer times with fidelities below 90% [36–38]. However,
single photons have the potential to carry much more
information using different degrees of freedom (see
Supplemental Material for further details [39]). Hence
the natural question is whether using multiple degrees of
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freedom is advantageous, in terms of reducing the
number of photons while maintaining the same number
of 2-qubit gates.
Here we investigate the potential of quantum multi-

plexing to reduce the resources required to implement loss-
based error correction codes. We take as a central figure of
merit the required number of single photons as well as
qubits. We analyze two well-known ECCs, the redundant
quantum parity [21] and quantum Reed-Solomon codes
[24], determining the number of photons and qubits
required to reach a threshold success probability with
the multiplexing method.
Let us begin by exploring the redundant quantum parity

code [21] in a photon transmission regime, for which both
the number of qubits (memories within the node) and the
number of photons can be reduced using our quantum
multiplexing approach, all while maintaining the near-
deterministic transmission of information between the
two nodes. In the redundant quantum parity code, the
information α, β in our encoded state jψiðn;mÞ ¼
αjþi1 � � � jþin þ βj−i1 � � � j−in (each block term j�ii ¼
jHi⊗m � jVi⊗m containing m photons) is successfully
transmitted over the channel when at least one block of
m qubits arrives intact (no losses) and each other block
retains at least one photon [see Fig. 1(a) inset]. The success
probability is given by [40]

PS ¼ ½1 − ð1 − ptÞm�n − ½1 − pm
t − ð1 − ptÞm�n; ð1Þ

where pt is the single-photon transmission probability
through the channel. Our first observation is that this
concatenated code is not particularly resource efficient,
as the number of qubits at the first logical layer m grows
inversely with the transmission probability pt. Further, n
grows inversely with pm

t and so ðm; nÞ grow exponentially
with distance between nodes. Our quantum multiplexer is a
natural solution [20]: here we encode multiple qubits onto a

single photon, meaning less photons in total need to be
transmitted. More specifically, we enact a 2-qubit gate
between the first degree of freedom (polarization) and a
second photonic or matter qubit. Then, swapping the
polarization of the initial photon with another degree of
freedom (time bin in this case), a third system can then
interact independently with the polarization of this same
photon (for further details, see Supplemental Material
[39]). The quantum multiplexer has many potential bene-
fits, including deterministic operations between different
degrees of freedom—especially important when single-
photon sources are probabilistic in nature.
Let us explore this in a little more detail. In the inset of

Fig. 1(a)(i) we illustrate a six-photon redundant quantum
parity code realization without the use of quantum multi-
plexing in which three blocks of two photons each are used.
After the photons are transmitted over the lossy channel,
the code is successful if at least one block contains two
photons and the other two blocks each contain one or more
photons. One can think of substituting those six photons
with three quantum multiplexed photons each carrying two
qubits of information. In Fig. 1(a)(ii) these are represented
by the colored lines connected to the dots contained in the
blocks (see Supplemental Material for further details [39]).
In this case, the ECC only tolerates the loss of one photon.
Therefore, it would seem logical that we can reduce the
number of photons by using the multiplexing approach,
provided that the success probability is above the desired
threshold value. This raises the question as to what the
success probabilityPQM

S will be in this quantummultiplexed
approach. One can show for ntot transmitted photons that

PQM
S ¼

Xn�

i¼0

��
ntot
i

�
− ðUi þ EiÞ

�
pntot−i
t ð1 − ptÞi; ð2Þ

where Ui and Ei are the number of events in which losing i
photons will leave none of the blocks with the initial
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FIG. 1. (a) Plot of the overall success probability versus photon transmission probability pt of the redundant quantum parity code with
(blue curve) and without (red and yellow curves) quantum multiplexed photons. (Inset) Schematic illustration of a particular instance of
the 6-qubit quantum redundancy parity code, in which (i) each photon carries one qubit and (ii) three photons carry two qubits of
information each (2q=p) (ii). (b) Similarly, we show the success probability PQM

S versus pt for three different configurations of a
quantum multiplexed system. Here six photons carry three qubits each, distributed over six blocks (each block containing three qubits).
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number of qubits or at least one empty block, and n� is the
number of lost photons the ECC can tolerate. We need to
determine both Ui and Ei, which are highly dependent on
how the quantum multiplexed photons are connected to the
blocks [see Fig. 1(b)]. Different configurations lead to
different success probabilities. We can also release the
constraints of all blocks having to have the same number of
qubits (an unbalanced configuration), which is typically
not utilized in error correction schemes. This enables us to
further reduce the number of qubits (and photons) even in
the nonmultiplexed case (see Supplemental Material [39]).
In Fig. 1(a) we plot the overall success probability PS

versus pt for two nonmultiplexed (equal and unbalanced)
configurations alongside one quantum multiplexed
situation with a minimum threshold success probability
requirement of P̄S ¼ 0.995 (typical for many quantum
computation-based tasks). It is clear that our three-photon
quantum multiplexed case (three blocks with 2q=p) dra-
matically outperforms the traditional six-photon nonmulti-
plexed case (three blocks with two qubits, photons each). In
the region 0.958≲ pt ≲ 0.976, the six-photon case does
not reach our threshold target, while the three-photon
multiplexed approach does. The seven-photon configura-
tion (with the first block containing three photons, while the
second and third blocks contain two photons each) per-
forms slightly better than the multiplexed case. However,
both are above the threshold and the multiplexed situation
uses fewer photons, qubits, and 2-qubit gates. The multi-
plexed approach also halves the number of photons in
the region 0.976≲ pt ≤ 0.995. These are critical resource
savings.
It is clear that the lower pt is, the more qubits (2-qubit

gates) and photons we will need to reach PS. It is important,
in reducing the total numbers of these resources, to also
explore unbalanced quantum multiplexing configurations.
In Fig. 2(a) we plot the minimal number of qubits Nmin and
photons nmin versus pt for resource-optimal configurations

with two and four qubits per photon. Quantum multiplexed
systems utilize fewer photons, however, the number of
qubits is either the same or slightly higher, except in a small
region near pt ∼ 0.97 [Fig. 1(a)]. In fact, we can almost
halve the number of photons being transmitted over the
channel—quite an advantage, especially as single-photon
sources are currently not as efficient as quantum gates or
measurements.
The number of qubits can be maintained equal to the

nonmultiplexing case, while reducing the number of
photons, with a mixed strategy, in which each photon
can carry an arbitrary number of qubits (from one to four).
Table I shows the total number of photons and the total
number of qubits needed for reaching PS at pt ¼ 0.916
using the pure and the mixed strategies. We observe that we
can reach the required PS with a lower number of photons
(12) given the same number of qubits (15) when we apply
the mixed strategy. The number of 2-qubit gates required is
therefore the same as for the nonmultiplexing case, even for
bigger codes. This further highlights the potential advan-
tages of quantum multiplexing. Can these improvements
be generalized to other loss-based quantum error correc-
tion codes?
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FIG. 2. Plot of the minimum number of qubits (solid lines) and photons (dotted lines) for the (a) redundant quantum parity and
(b) Reed-Solomon codes required to reach a threshold success probability of PS ¼ 0.995 versus the photon transmission probability pt
using a quantum multiplexed encoding of 2–5 qubits per photon (q=p), respectively. Also shown is the nonmultiplexed situation of 1
q=p for all codes including the hexagonal GKP code (black curves).

TABLE I. Minimum number of photons and qubits required to
reach our overall information transfer success probability thresh-
old of PS ¼ 0.995 with pt ¼ 0.916. Similar results are seen for
most values of pt. The asterisk corresponds to the optimal case, in
which, by using the mixing strategy, for a givenNmin we reach the
lowest nmin for a specific value of pt.

Total number of photons Total number of qubits

15 (1q=p) 15
14, 13, 12� (mixed) 15
11 (2q=p) 22
11, 10, 9, 8 (mixed) 21
7 (3q=p) 21
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In the quantum Reed-Solomon ½½d; 2k − d; d − kþ 1��d
code information is encoded in d qudits, with the code
failing on the loss of d − kþ 1 out of d qudits. For
comparative purposes, we will express the degree of
multiplexing as q qubits of information per photon.
When we encode the qudits in these q degrees of freedom
of quantum multiplexed photons, any qudit of information
depends upon the successful transmission of ⌈ log2ðdÞ=q⌉
photons [24]. The probability of failure is therefore

Pfail ¼
Xd

j¼d−kþ1

�
d
j

��
1 − p

⌈
log2ðdÞ

q ⌉
t

�j
p
⌈
log2ðdÞ

q ⌉ðd−jÞ
t : ð3Þ

In this code, the block is given by the total number of
photons encoding a single qudit, and if a block is
incomplete, the qudit is not successfully transmitted.
Therefore, the performance can be improved by maintain-
ing independence between these blocks and by reducing the
chances for loss events within any single block. Adding
additional quantum multiplexing will help so long as it
preserves independence between qudit loss events. For the
quantum Reed-Solomon code, we can also determine the
lowest number of qubits and photons required to reach PS,
as shown in Fig. 2(b). Here, the advantage of using
quantum multiplexed photons is evident in terms of a
reduction of the number of qubits, 2-qubit gates, and
photons compared to the no quantum multiplexing case.
In particular, the higher the quantum multiplexing degree,
the less qubits and photons we require. For instance,
at pt ¼ 0.85, we have that for q ¼ 4, Nmin ≃ 40 and
nmin ≃ 10, whereas when no quantum multiplexed photons
are in use, we have that both Nmin and nmin are over 1000.
As pt gets lower, the number of photons and qubits
increases considerably, hence, we need to use higher
degrees of quantum multiplexing. Furthermore, by compar-
ing Fig. 2(a) with Fig. 2(b), we infer that there is always a
specific value of q for which the Reed-Solomon code
requires a lower number of resources compared to the
parity code [for q ¼ 4, at pt ¼ 0.85, NminðnminÞ is 72%
(75%) lower for the Reed-Solomon code than the parity
code]. For other error correction codes based on the
transmission of qudits, we expect the same reduction in
the number of qubits, 2-qubit gates, and photons when
quantum multiplexing is in use.
There are other loss codes based on encoding informa-

tion in superposition of photon number (bosonic [23] and
GKP [26], for instance), in which quantum multiplexing is
ineffective. In these cases, this would correspond to the
assignment of information about multiple excitation to the
various degrees of freedom of a single mode. However, any
quantum multiplexed photon mode is equivalent, in this
case, to a no quantum multiplexed mode. There is always,
therefore, a code using fewer excitations and a higher
number of modes than the original that will perform as well
as the quantum multiplexed case.

It is essential to compare these quantum multiplexed
codes to the best loss codes currently known—namely, the
GKP codes [41,42]. In particular, in [42] the authors show
that the hexagonal GKP code is optimal among all single-
mode bosonic codes against loss errors expressed as a
Gaussian displacement channel. In Figs. 2(a) and 2(b), we
plot (black curves) the average number of photons for the
hexagonal GKP code [43]. This suggests that there are
regions where the GKP code has a better performance and
other regions where this is reversed. The multiplexed codes
operate better in the higher loss regimes. Further, a critical
consideration has to be the near-deterministic implementa-
tion of the code itself. Our quantum multiplexing approach
requires the same basic 2-qubit or qudit gates needed for
quantum logic (and the original codes themselves) with the
addition of high efficiency optical switches to swap state
between the different degrees of freedom. On the other
hand, the initialization of the GKP code is quite demanding
to achieve in a near-deterministic way and necessitates a
more complex continuous variable procedure, though
Gaussian operations are sufficient for subsequent qubit
control. Generating such codes in a heralded but probabi-
listic fashion has been achieved, but unfortunately increases
the resources required [44,45] (see Supplemental Material
[39]). This indicates that additional resources will be
required at the end nodes to process the quantum data
transmitted over the communication channel. We note that
a proof-of-principle demonstration of deterministic prepa-
ration was performed in [45] and look forward to the
development of this promising approach going forward.
To summarize, we have shown how quantum multi-

plexed loss codes have the potential to significantly
decrease the resources required to transfer quantum infor-
mation between two adjacent nodes. This is achieved while
maintaining or even lowering the required number of 2-
qubit gates. Two primary error correction codes were
considered: the redundant quantum parity code and the
quantum Reed-Solomon code. For the former, we found
that the total number of single photons that need to be
transmitted through the channel can be dramatically
reduced (near 50%) without significantly increasing the
number of qubits. Further, we found it advantageous for
individual photons to have different degrees of quantum
multiplexing, as well as for blocks to contain different
numbers of qubits. The quantum Reed-Solomon code
significantly outperforms the redundant quantum parity
code and, using quantum multiplexed qudits, has the
potential to reduce simultaneously the number of photons,
qubits, and gates used. These improvements should be
possible in many (but not all) of the other loss-based error
correction codes when quantum multiplexing is used.
Quantum multiplexing has the potential to be a new
resource saving tool especially for near-term implementa-
tions. Our findings can be applied to any communication
system that needs error correction to improve its efficiency,
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such as in quantum repeaters, quantum computation, and
quantum sensing.
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