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Steady technological advances are paving the way for the implementation of the quantum internet, a
network of locations interconnected by quantum channels. Here we propose a model to simulate a quantum
internet based on optical fibers and employ network-theory techniques to characterize the statistical
properties of the photonic networks it generates. Our model predicts a continuous phase transition between
a disconnected and a highly connected phase and that the typical photonic networks do not present the
small world property. We compute the critical exponents characterizing the phase transition, provide
quantitative estimates for the minimum density of nodes needed to have a fully connected network and for
the average distance between nodes. Our results thus provide quantitative benchmarks for the development
of a quantum internet.
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Network science is a multidisciplinary field that offers a
common language to study statistical properties of a variety
of systems such as social, biological, and economical
networks [1]. On the basis of its success is the fact that
systems are seeing simply as graphs, i.e., a set of nodes
interacting via edges. In this approach it is not the particular
working or behavior of the individual constituents that
matters, but how connected they are. This viewpoint led to
the discovery that systems that are very different in nature,
such as the internet, scientific collaborations, or protein
networks, are very similar from a network perspective.
Furthermore, understanding the network connectivity
allows to design better man-made networks, such as power
grids, transport networks or company organization.
A new type of communication network, the quantum

internet, is currently under development [2–4]. It consists
of distant parties connected by quantum channels through
which quantum bits can be exchanged. This new network
will boost our capabilities of communication by allowing
the execution of protocols which are more efficient than
their classical counterpart, or that have no classical analog
whatsoever. The main example of such advantage is the
possibility of securing messages with quantum cryptogra-
phy [5], currently one of the most advanced quantum
technologies. Other anticipated applications are clock
synchronization [6] and private quantum computation on
a cloud [7,8]. From a fundamental perspective, quantum
networks will also allow us to reach physical phenomena
that have no classical analog. An example is the distribution
of entanglement across the network, which will allow

distant parties to perform quantum teleportation or to
establish correlations with no classical explanation and
defy our notions of causality [9]. Assuming an underlying
quantum network, a number of protocols for entanglement
distribution and communication in quantum networks
have been proposed [10–16]. However, to the best of
our knowledge, such underlying quantum network and
its properties have not been considered so far.
Here we propose a model to simulate the quantum

internet assuming that it is going to be built from the
current network of optical fibers (see for instance [17,18]).
Our goal is twofold: first, to predict large-scale properties
of typical photonic networks, such as their connectivity,
nodes distance, and aggregation, and (ii) to provide
quantitative estimates for useful quantities such as the
minimum density of nodes needed to have a fully con-
nected network and the typical network distances between
nodes. Our findings predict a phase transition in the
network connectivity as a function of the density of nodes:
there is a critical density above which the network changes
from being disconnected to presenting a giant connected
cluster. We estimate the value of this critical density and the
critical exponents characterizing the phase transition.
Nicely, few nodes are needed to make photonic networks
of realistic sizes fully connected. However, as opposed to
the current internet [19], the quantum internet does not
present the small world property. Notwithstanding, the
typical network distances between nodes are small, imply-
ing that few entanglement swappings have to be employed
to distribute entanglement between any two nodes.
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Formally, a network model is defined by a set of N
nodes being connected by vertices according to a given
probabilistic rule. The central goal of network science is to
understand the asymptotic properties of networks as the
number of nodes increases. A particularly relevant exam-
ple is given by random networks [20,21], defined by a
model where every pair of node is connected with
probability p [22]. The characteristic trait of random
networks is that for sufficiently large number of nodes
N, the probability of finding a node with k connections
PðkÞ, called the degree distribution, can be approximated
by a Poisson distribution PðkÞ ¼ ½e−hkihkik=k!�, where
hki ¼ pðN − 1Þ is the average connectivity of the net-
work. Despite being very simple, the random network
model presents very rich statistical phenomena. For
instance, it displays a phase transition: there is a critical
probability pc such that if p < pc the network is com-
posed by small and disconnected clusters and, if p > pc a
giant cluster with size of same order of the whole network
is present. Another striking feature is the appearance of a
phenomenon known as small world. This refers to the fact
that the average shortest path length (i.e., the shortest path
between two nodes) scales logarithmically with N, mean-
ing that the typical distances between pairs of nodes is
very short compared to the size of the network.
Another important property of networks is the average

clustering coefficient. It captures how the neighbors of each
node are connected between them on average. Let us first
define the local clustering coefficient of node i as
Ci ¼ ½2ni=kiðki − 1Þ�, where ni the number of edges
between the ki neighbors of the site i and kiðki − 1Þ=2
is total possible number of edges between them. If Ci ¼ 0
there is no links between the neighbors of i, while Ci ¼ 1
indicates that the neighbors of i form a fully connected
graph. The average clustering coefficient is defined as
hCi ¼ ð1=NÞPi Ci. For random networks hCi ¼ hki=N,
showing a decrease with the network size.
In what follows we will propose a model to simulate the

quantum internet and use it to predict these properties for
photonic networks. As we will see, these networks present
similarities and differences with the random networks.
Our model considers a network built from optical fibers,

the main candidate to carry quantum information encoded
in photons. Other technologies, such as quantum satellites,
are also being considered and will probably be combined
with the fiber-optics infrastructure [23,24]. Thus, the results
presented here can be seen as benchmark to be improved by
additional technologies. Our model is defined by the
following steps: step 0—Nodes distribution. We first
distribute N nodes uniformly in a disk of radius R (points
at Fig. 1) [25]. Step 1—Fiber-optics network simulation.
Following [26], we simulate how the optical fibers are
distributed among these nodes using the Waxman model
[27], a soft random geometric graph (RGG) with two
sources of randomness [28]. Each pair of nodes i and j are

connected by a fiber (grey lines at Fig. 1) with probability
given by Πij ¼ βe−dij=αL, where dij is the Euclidean
distance between i and j, L is the maximum distance
between any two nodes, the parameter α > 0 controls the
typical edge length of the network (the maximum distance
of two nodes directly connected), and 0 < β ≤ 1 controls
the average degree of the network (see [29] for further
generalizations of this connection rule). The constants have
been estimated for particular optical fiber networks, such as
for the U.S. fiber-optics network where αL ¼ 226 km and
β ¼ 1 [26,30], the values we use in the numerical simu-
lations presented here. Notice, in particular, that L and α
will depend on the radius R and the node’s density ρ but
αL ¼ 226 km is kept constant.
Step 2—Photonic network simulation. Once we generate

the fiber-optics network we simulate the transmission of
photons through it. It turns out that photonic losses increase
exponentially with the fiber length [31]. More precisely, the
transmissivity determining the fraction of energy received
at the output of a fiber link connecting nodes i and j is
given by qij ¼ 10−γdij=10, where dij (km) is the Euclidean
distance between i and j and the value of the fiber loss γ
depends on the photon wavelength. For instance, for the
silicon fiber, losses are minimized at the wavelength of
1550 nm, achieving γ ≃ 0.2 dB=km, the value we consider
in our simulations. Even with further advances, the intrinsic
physical loss limit of the silica optical fibers is estimated to
be between 0.095 to 0.13 dB=km [32].

FIG. 1. Samples from the quantum internet. The grey edges
represents the fiber-optics networks generated at step 1 (see main
text). The red edges show the photonic links established in step 2.
Greener (bluer) nodes are more (less) connected, following a
Poisson distribution. NG refers to the number of nodes belonging
to the biggest cluster in the network, and N the total number of
nodes. The plots considered R ¼ 1800 km (giving, approxi-
mately, the U.S. area) and show that the biggest cluster consists
of 97,8% of the nodes when N ¼ 1000.
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Given that two nodes share an optical fiber, we define the
probability pij that two nodes are connected as

pij ¼ 1 − ð1 − qijÞnp : ð1Þ

The free parameter np controls how many photons are sent
between each node in the attempt of generating a photonic
link, i.e., two nodes are connected if at least one out of np
photons is transmitted between them. Notice that, depend-
ing on the protocol one is interested in performing, extra
parameters can enter in the analysis, such as the perfor-
mance of quantum memories or computers. For an illus-
trative matter, we chose np ¼ 1000 in the figures depicted
here, as this value guarantees that connections over 100 km,
the order of the state-of-art quantum communication
experiments, are established. We highlight, however, that
extensive simulations have been also performed with
different values (see the Supplemental Material [33]),
showing that the qualitative features described below of
the photonic networks are universal and independent of the
value of np.
Clearly, we are assuming that one cannot actively add

new optical fibers to the existing network, thus our
photonic quantum network is constructed in an inherently
passive manner. In contrast, protocols for entanglement
distribution [10–16] have a more active flavor since the
strategies can be adapted depending on the specific network
topology or channel capacity of a given link. Notice,
however, that such protocols assume an underlying quan-
tum network, over which they operate. To our knowledge,
however, there is no specific model for such quantum
network. That is precisely what Steps 0–2 above achieve.
All in all, the model described above defines a network

where the nodes are uniformly distributed and connected
with probability Pij ¼ Πijpij, i.e., each pair of nodes are
connected if there is an optical fiber liking them and at least
one photon is transmitted through it. So in essence, our
model can be considered as two soft RGGs build one over
the other. Considering the asymptotic regime N → ∞,
properties of particular RGGs (different from the two
layers we consider here) have been widely studied
[28,42–46]. Since we are interested in real finite networks,
we have to rely on numerical simulations. In our simu-
lations we sample 103 of such networks and calculate its
typical properties which agree with known results in the
asymptotic limit. Some samples of the networks generated
by this algorithm are shown in the Fig. 1.
The first property we analyze is the degree distribution

PðkÞ. As shown in Fig. 2 (top panels) and in agreement
with the asymptotic results in [28], the degree distribution
can be perfectly fitted a Poisson distribution that depends
solely on the density of nodes ρ:

PðkÞ ¼ e−AρðAρÞk
k!

; ð2Þ

where A ¼ 5.2 × 104 (see [33]). In this sense the quantum
internet has a similar structure of a random network. In
particular, the majority of nodes are connected to few other
nodes, while very few nodes can make many connections.
Another similarity with random networks model is the

existence of a phase transition (see bottom panels of Fig. 2):
if the density of nodes is below a certain critical value, the
network belongs to a disconnected phase, where only
disconnected clusters of nodes are present. In this phase,
nodes that belong to different clusters can not perform
quantum protocols between them. However, if the density
of nodes is above the critical value then a giant cluster
containing all the nodes is present. In this phase, since there
is a path between any pair of nodes, entanglement can in
principle be distributed through entanglement swapping
between the whole network. We have estimated the critical
density to be ρc ≈ 6.82 × 10−5 [see Fig. 2(c)], which
corresponds to hkic ≈ 3.5 (as opposed to hkic ¼ 1 in
random networks). Nicely, this critical density is quite
small, implying that large areas can be connected by few
nodes. For instance, Fig. 2(d) shows that the minimum
number of nodes necessary to have a connected network in
areas comparable to the U.S. or Europe are of the order of
1000 nodes. More generally, our results can be readily
applied to infer what are the requirements of a specific
quantum network for the appearance of the giant cluster.
For instance, from Figs. 2(c) and 2(d) and given a certain
number of nodes, one can extract what is the minimum
density (alternatively, the maximum area) required for a

FIG. 2. Degree distribution and emergence of the giant cluster.
(Top panel) (a) The degree distribution PðkÞ for a fixed density
value of ρ ¼ 8 × 10−5 and several values of N. (b) PðkÞ for a
fixed value of N and several values of ρ. (Bottom panel) Relative
size of the giant cluster as a function of (c) ρ (density). We see a
clear phase transition at ρc ≈ 6.82 × 10−5 corresponding to
hkic ≈ 3.56. (d) The appearance of the giant cluster for moderate
size networks covering a relatively large area.
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fully connected network. If a given network is below the
critical density, our results immediately show how many
more nodes should be added to such a network (either using
the existing optical fibers or perhaps adding new ones).
As showed in the Fig. 2(c), the relative size of the giant

cluster displays a second order phase transition with respect
to the density ρ. In [33] we show that m≡ hNGi=N, at the
critical density ρc ≃ 6.82 × 10−5, exhibits a power law
behavior given bym ∼ ðρ − ρcÞβ, with the associated critical
exponent β ≃ 0.2. Furthermore, we also analyzed the stan-
dard deviation of the size of the largest cluster, analogous to
the susceptibility, defined by χ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hN2
Gi − hNGi2

p
, the

characteristic cluster size s�, the cluster size distribution
nðsÞ and computed the associated critical exponents (see
[33] for more details).
In spite of the previously discussed similarities between

the quantum internet and random networks, we have
observed two important differences. First, as shown in
Fig. 3(a), the photonic quantum network does not display
the small world property, since hli, the average shortest
path length between pairs of nodes, grows faster than lnN.
We estimated that hli depends of ρ and N following the
relation hli ≃ bNα=ρwith b ¼ 5 × 10−5 and α ≈ 1=2 as can
be seen in the fit of the Fig. 3(a). This result is in agreement
and provides numerical confirmation for the conjecture in
[47] about hli in planar random networks. Nevertheless, as
shown in Fig. 3(b), for moderate network sizes (expected

from the first stages of implementation of the quantum
internet) hli is still small. This is very relevant, for instance,
in entanglement distribution. As discussed in more details
below, the smaller is this path, the smaller is the number of
entanglement swappings required to connect any two nodes
and thus the better is the amount of entanglement estab-
lished among them.
The average clustering coefficient of the photonic

quantum networks also differs from the random network
case. As we can see in Fig. 3(c), hCi increases with N
independently of the radius R and reach a maximum value
hCi ≃ 0.41, in agreement with [48]. This means that the
photonic quantum networks can be classified as very
aggregated [1]. As consequence, if a given node i is
connected to another distant node j, then with a very high
probability any of the nodes in the local vicinity of i will
also be connected to j through i. Furthermore, as shown in
Fig. 3(d), all curves collapses when we plot hCi as function
of ρ, pointing out the emergence of a universal behavior.
This means that we can describe any curve of the clustering
coefficient for any value of R with the same function.
In this Letter, we have proposed a model to study the

properties of a quantum internet based on optical fiber
technology. Using this model we predicted a phase tran-
sition, where there is a critical network density at which a
giant cluster suddenly emerges. Crucially, the critical
density separating the two phases is quite small, implying
that few nodes are needed to hold a fully connected
network in realistic areas. We also showed that, even
though the generated networks are very aggregated locally,
they do not lead to the small-world property. Although this
might seem as a negative result, we also showed that for
realistic networks sizes, the typical network distances
between nodes are small. For instance, in a disk of radius
R ¼ 800 km, we would need around N ¼ 1000 nodes to
have a connected network, while keeping the average
shortest path length of hli ≈ 5.
Our findings have important implications for entangle-

ment distribution. Suppose that the photonic links generat-
ing the networks are used to establish entanglement
between the nodes (i.e., each link can be seen as an
entangled pair of photons). In this case, it is possible to
generate entanglement between two nodes only if there is a
path connecting them (by performing entanglement swap-
ping on intermediate nodes), that is, only if the nodes
belong to the same cluster. Our results show that in the
connected phase, any node can in principle become
entangled to any other node, since all of them belong to
the same giant cluster. Notice that, in practice, each
entanglement swapping has the effect of damaging the
final amount of entanglement between the end nodes. Thus,
the fact that the number of intermediate nodes between any
pair is small means that few entanglement swappings are
necessary, which suggests the feasibility of entanglement
distribution in such networks.

FIG. 3. Average shortest path and average clustering coeffi-
cient. (Top panel) (a) hli as a function ofN for various values of ρ.
hli grows faster than lnN, showing no small-world phenomenon
as expected for random networks. (b) However, the average
shortest path for moderate size networks can be relatively small.
(Bottom panel) (c) Average clustering coefficient hCi as a
function of N for fixed values of R. hCi grows with N and
decreases with R. (d) Plotting hCi as a function of ρwe see that all
curves collapse, showing a universal behavior.
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Our results give a novel perspective to analyze the
quantum internet, providing an interdisciplinary bridge
between quantum information and network theory. The
present contribution should be seen as a starting point
towards more complicated models. For instance, it would
be interesting to see how the performance of other
components such as quantum memories and quantum
processors may affect the quantum network [49].
Another layer of complexity would be to consider the
quantum features of the arriving photons, such as coher-
ence and entanglement [50] and understand how entangle-
ment distribution protocols [10–16] perform over our
model for the quantum internet. Finally, it would be
interesting to consider other technologies such as the use
of satellites for quantum communication [23,51,52].
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