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In contrast to molecular gases, granular gases are characterized by inelastic collisions and require
therefore permanent driving to maintain a constant kinetic energy. The kinetic theory of granular gases
describes how the average velocity of the particles decreases after the driving is shut off. Moreover, it
predicts that the rescaled particle velocity distribution will approach a stationary state with overpopulated
high-velocity tails as compared to the Maxwell-Boltzmann distribution. While this fundamental theoretical
result was reproduced by numerical simulations, an experimental confirmation is still missing. Using a
microgravity experiment that allows the spatially homogeneous excitation of spheres via magnetic fields,
we confirm the theoretically predicted exponential decay of the tails of the velocity distribution.
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Introduction.—Granular gases consist of macroscopic
particles, i.e., their diameter d is micrometers or larger.
From this property follow two important differences
between granular and molecular gases. First, all collisions
between granular particles are inelastic: a part of the
mechanical energy of the relative motion of the particles
is converted to heat [1]. Second, the energy scales involved
in granular dynamics, such as the energy needed to lift a
grain its own diameter, are 10 to 20 orders of magnitude
larger than the thermal energy of the system. In conse-
quence, maintaining a dynamic state of a granular gas does
require the constant injection of energy.
However, these differences to molecular gases also

signify the chance to “reinvent statistical mechanics in a
new context” [2]. Properties of granular gases not known
from their molecular counterpart include non-Fourier heat
flow [3–5], correlations [6–8], breaking of time-reversal
symmetry [9,10], segregation [11–18], nonequipartition
[6,18–22], and clustering [23–32]. Sometimes granular
gases unexpectedly behave even like equilibrium systems
[33]. Motivated by these phenomena, theoretical physicists
and mathematicians started, at the turn of the century, to
extend the kinetic theory from nondissipative molecular
systems [34] to dissipative particle systems; for recent
summaries at the textbook level see Refs. [1,17].
The theoretical analysis of granular gases focuses on two

stationary states: First the homogeneously driven gas where
energy is injected in a spatially homogeneous way into the
system in order to compensate the energy loss due to inelastic
collisions. Kinetic theory predicts [35] that the distribution of
individual particle velocities PðvÞ develops overpopulated
tailswhen compared to theMaxwell-Boltzmanndistribution:
PðvÞ∼expð−kv3=2Þ for v > hvi=ϵ, where ϵ is the coefficient
of restitution and hvi is the average velocity of all particles.
Second, the homogeneous cooling state (HCS) where the

system is not disturbed by external forces [35–40]. This
results in amonotonous decrease of hviwith time t according
to the so-called Haff’s law [41],

hvðtÞi ¼ v0=ð1þ t=τÞγ: ð1Þ

τ is amaterial and density dependent characteristic timescale.
If the coefficient of restitution ϵ of the particles can be
considered to be velocity independent, γ equals one. If the
velocity dependence of ϵ for viscoelastic particles has to be
taken into account, γ becomes 5=6.
The reason that the HCS is qualified as a stationary state,

even though hvi is a function of time, is that the distribution
of the rescaled particle velocities c ¼ v=vT , becomes
stationary. vT is the velocity derived from granular temper-
ature T of the particles: vT ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2T=m
p

where m is the
particle mass. As discussed in Sec. 2 of the Supplemental
Material [42], this thermal velocity can be computed as
vT ¼ 2=

ffiffiffi
π

p hvi. Kinetic theory [35,36] predicts that the tail
of the velocity distribution PðcÞ becomes exponential, i.e.,
PðcÞ ∼ expð−kcÞ. The HCS ends with the onset of particle
clustering which destroys its homogeneity [31].
Experimental confirmation of these kinetic theory results

is difficult for two reasons. First, creating and maintaining a
granular gas requires constant energy injection. Typically,
this is done by vibrating the boundaries of the container,
which, however, creates spatial and temporal inhomoge-
neities within the granular gas [25–28,47–50], thereby
invalidating one of the preconditions of the kinetic theory
approaches. A spatially homogeneous driving can be
obtained by either restricting the experiment to a horizon-
tally aligned two-dimensional system which is shaken
vertically [51–55], or by using magnetic [30,56–59] or
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electrostatic [60] forces to drive a three-dimensional system
in the bulk.
Second, on Earth the gravitational field will always

collapse the granular gas into a granular solid where
collisions are replaced by enduring contacts. This effect
can again be counteracted by limiting the granular gas to a
horizontally aligned two-dimensional system. This comes,
however, at the price of a significantly larger number of
particle-boundary rather than particle-particle collisions.
Force-free and three-dimensional granular gases can

therefore only be realized by either levitating the particles
in a magnetic field [30] or by performing the experiments in
a real microgravity environment, as, e.g., realized in para-
bolic flights [28,50,53,61–63], drop towers [64,65], sound-
ing rockets [22,26,66], or satellites [67].
In consequence, experimental confirmations of the main

results of the kinetic theory of granular gases have been
scarce. A number of groups tried to measure the velocity
distribution of the homogeneously driven gas using boun-
dary-driven, two-dimensional [51–53,68–70] and three-
dimensional [71,72] systems. They reported high energy
tails proportional to expð−kvαÞ with values of α in the
range 0.8 to 2. Especially for two-dimensional systems it
has been shown that α is controlled by the friction
coefficient of particle-sidewall collisions [73]. The only
confirmations of α ¼ 1.5 were obtained in an electrostati-
cally driven three-dimensional system [60], and in a two-
dimensional, horizontal system containing rotationally
driven disks [74].
For the homogeneous cooling state, the validity of

Eq. (1) has been shown both in numerical simulations
[31,75–77] and experiments [30,64,66]. For the exponents
α characterizing the tail of the velocity distribution values in
the range 0.6 to 1.5 have been reported for boundary-
driven, two-dimensional systems [53]. The theoretically
predicted exponential tail, i.e., α ¼ 1, has up to now only
been seen in numerical simulations [78,79]; an experimen-
tal confirmation is missing.
In this Letter, we describe a granular gas experiment

which is both force-free, due to being performed in
microgravity, and homogeneously heated via magnetic
excitation. Our results confirm Haff’s cooling law and
show clear evidence of an exponential tail of the particle
velocity distribution, thus directly confirming the validity
of the kinetic theory of granular gases in the homogeneous
cooling state.
Experimental setup.—The experiment was performed in

a sounding rocket of the MAPHEUS campaign of German
Aerospace Center (DLR) which provided 375 s of micro-
gravity with a remnant gravity on the order of 10−5 times
the earth acceleration [58]. The granular gas consists of
2796 spheres with a diameter d ¼ 1.6� 0.02 mm. The
particles are contained in a cubic container made of PMMA
acrylic glass with an inner side length of 50 mm. Taking
into account the slanted corners of the cell,the average

volume fraction of the gas is ϕ ¼ 0.05 and the number
density n ¼ 0.0234 mm−3. The interior of the container is
connected to the outside atmosphere, resulting in an air
pressure< 0.01 Pa during the experiment. The resulting air
drag reduces the particle velocity by 0.01% per second [58]
The spheres are made of ferro-magnetic MuMetall

(Sekels GmbH). Energy is injected into all granular
particles in the bulk by pairs of magnets which are aligned
along the diagonals of the cube, cf. Fig. 1. The excitation
protocol cycles through the four pairs, switching each one
on for 20 ms and then pausing for 80 ms. The low
coercivity of the particles ensures that the long-range
interactions between the particles are negligible during
cooling [58], while during heating, such long-range inter-
actions actually contribute to a more isotropic excitation
[59]. As shown in numerical simulations [59] and experi-
ments [58], this type of excitation results in a homo-
geneously heated granular gas. It can also be seen in the
movie of the experiment which is part of the Supplemental
Material [42].

FIG. 1. Experimental setup. (a) The diagonals of a PMMA cube
containing 2796 ferromagnetic spheres are aligned with four pairs
of electromagnets that are used to inject energy into the granular
gas. The time evolution of the granular gas is then observed with a
camera at 165 frames=s. Panel (b) shows a typical example
image.

PHYSICAL REVIEW LETTERS 124, 208007 (2020)

208007-2



The granular dynamics inside the cell is observed with
light field camera Raytrix R5 at 165 frames=s and a
magnification of 70 μm=pixel. Because of its reduced
precision, the depth information provided by the light field
camera is not used in our analysis. Section 1 of the
Supplemental Material [42] provides further information
on the two-dimensional image analysis.
Freely cooling granular gas.—During the flight of the

sounding rocket four individual experiments were per-
formed. Each experiment consisted of a first phase of at
least 40 s duration during which the granular gas was
heated by switching the magnetic fields on and off. Then
the excitation was stopped and a cooling period of at least
40 s duration followed. However, as shown in Sec. 3 of the
Supplemental Material [42], after about 4 s the remnant
gravitation starts to induce spatial inhomogeneities in the
sample cell. We therefore limit the subsequent analysis to
the first 3 s of the cooling phase; these were sufficient to
reach a stationary state as shown in Sec. 6 of the
Supplemental Material [42].
Figure 2 presents the evolution of the average particle

velocity in the last second of the heating and the first 3 s of
the cooling phase. Two features of Fig. 2 are important to
point out. First, Haff’s law [Eq. (1), displayed in red]
provides a good fit to all four experiments. We have tested
both exponents γ ¼ 1 and 5=6; the differences are within
our experimental uncertainty. This signifies that the velocity

dependence of ϵ plays only a minor role in the velocity
range analyzed here.
This is to be expected because for ϵðgÞ ¼ 1 − ζg1=5 þ

h:o:t: and within the studied range of relative collision
velocities g, the change of epsilon is small (ζ contains
material parameters) [1]. We assume in our subsequent
analysis a constant ϵ ¼ 0.66, which is measured from lab
calibrations (see Sec. 7 of Supplemental Material for
details [42]).
Second, the reproducibility is high between the four

experiments. The parameters v0 and τ of the Haff fits agree
within �8%, and v0τ, which is determined by system
properties alone, agrees within �3%. Additionally, the
particle velocities averaged over the last 2 s of the heating
phase differ only by �0.3 mm=s around the mean of the
four experiments: 20.9 mm=s.
While the exact value of the fit parameter v0 depends on

the stochastic fluctuations within the granular gas during
the heating phase, the value of τ can be compared to its
prediction from granular kinetic theory [1,35]

τk:t: ¼
� ffiffiffiffiffiffi

2π
p

3
χðϕÞ

�
1þ 3

16
a2

�
ð1 − ϵ2Þnd2vT0

�
−1
: ð2Þ

Here, χðϕÞ is the contact value of the pair correlation
function. We use the usual approximation for hard sphere
systems [80]: χðϕÞ ¼ ð2 − ϕÞ=½2ð1 − ϕÞ3�. a2 is the second
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FIG. 2. All four experiments are well described by Haff’s cooling law. Each panel displays first the last second of the magnetic driving
with fluctuations in the average velocity. At t ¼ 0 the magnetic driving is switched off and the subsequent evolution of the average
velocity is fit with Haff’s law [Eq. (1)] assuming a constant coefficient of restitution (red line). Each fit provides two parameters: v0, the
average particle velocity at t ¼ 0, and τ, the time by which the velocity has decreased to v0=2.
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Sonine coefficient: a2 ¼ 16ð1 − ϵÞð1 − 2ϵ2Þ=½81 − 17ϵþ
30ϵ2ð1 − ϵÞ�. vT0 is the thermal velocity of the particles
at the beginning of the cooling: vT0 ¼ 2=

ffiffiffi
π

p
v0 (see Sec. 2

of the Supplemental Material for details [42]). Using the
fitted value v0 ¼ 20.6 mm=s from our first experiment,
Eq. (2) predicts τk:t: ¼ 1.34 s, which is a factor of 2.6
times larger than the fitted value τ ¼ 0.507 s.
The fact that τ < τk:t: matches with the limits of Eq. (2)

which includes only the energy dissipation in the normal
direction of the collisions, and not dissipation in the
tangential direction which can, e.g., be caused by inter-
particle friction. Furthermore, inclusion of tangential dis-
sipation means the rotational degrees of freedom join the
dissipation mechanism and couple with the translational
motion [6]. We expect that theories for rough particles
[7,75,81,82] provide predictions closer to the experimental
results. However, such a comparison would also require 3D
particle tracking including the rotational motion of the
particles. Therefore this question depicts the direction of
future experimental improvements.
Velocity distribution.—Figure 3 shows the distribution of

the rescaled particle velocities PðcÞ. The high reproduc-
ibility of the experiments allows us to improve the statistics
by averaging the distributions of the four experiments; the
four individual distributions can be found in Sec. 4 of the
Supplemental Material [42]. For values of c smaller than
1.5, PðcÞ can be approximated by a Maxwell-Boltzmann
distribution. However, the main result of Fig. 3 is that the
high energy tail of PðcÞ decays exponentially, as predicted
by the kinetic theory of granular gases. A nonlinear fit of
the experimental data using PðcÞ ∼ expð−kcαÞ results in
α ¼ 0.96� 0.19, which is again in good agreement with
kinetic theory.
Because of the intermittent nature of the magnetic

driving (i.e., 20 ms on, 80 ms off), the velocity distribution

of the heated gas, which is shown in Sec. 5 of the
Supplemental Material [42], is different from a Maxwell-
Boltzmann distribution and it does also not display a high
velocity tail proportional to expð−kv3=2Þ as predicted by
kinetic theory for the homogeneously driven gas. A fit of
the tail with PðcÞ ∼ expð−kcαÞ results in α ¼ 0.72� 0.21.
The fact that the system still relaxes towards the

distribution predicted by granular kinetic theory can be
interpreted as the equivalent of Boltzmann’s H theorem for
thermal systems [34]. It is essential for the comparison with
theoretical predictions that the observed velocity histogram
allows for the interpretation as a distribution function
including the definition of a well-defined temperature.
Conclusions.—We have shown experimentally that the

kinetic theory of granular gases predicts correctly the two
most fundamental properties of a freely cooling three-
dimensional gas: the evolution of the average particle
velocity and the appearance of an exponential tail in the
particle velocity distribution. Building on this foundation,
we expect quantitative deviations between experiment and
existing theory to stimulate further fruitful work.
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