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The link between local structure and dynamical slowdown in glassy fluids has been the focus of intense
debate for the better part of a century. Nonetheless, a simple method to predict the dynamical behavior of a
fluid purely from its local structural features is still missing. Here, we demonstrate that the diffusivity of
perhaps the most fundamental family of glass formers—hard sphere mixtures—can be accurately predicted
based on just the packing fraction and a simple order parameter measuring the tetrahedrality of the local
structure. Essentially, we show that the number of tetrahedral clusters in a hard sphere mixture is directly
linked to its global diffusivity. Moreover, the same order parameter is capable of locally pinpointing
particles in the system with high and low mobility. We attribute the power of the local tetrahedrality for
predicting local and global dynamics to the high stability of tetrahedral clusters, the most fundamental
building and densest-packing building blocks for a disordered fluid.
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Hard spheres are arguably the most fundamental model
system in colloidal science, for theory, simulation, and
experiment alike. Over many decades of study, hard spheres
have been instrumental in cementing our understanding of
the physics of, e.g., entropy-driven phase transitions, crystal
nucleation, and the glass transition [1–8]. Hard particles,
despite their simplicity, serve as a basic approach to model
the rheology of dense suspensions [9] with applications in
cell biology [10], food science [11], and geology [12].
Although monodisperse systems of hard spheres readily
crystallize into simple close-packed crystals, mixtures of
hard spheres of different sizes can form a zoo of exotic
structures [13,14], and are hence a promising route to the
creation of new materials with well-controlled structure on
the microscopic scale. Additionally, hard sphere mixtures
are also prototypical glass formers [15,16], and close to the
regime where crystallization is expected, their dynamics
often slow down dramatically [17]. As a result, under-
standing the dynamics of hard sphere mixtures close to the
glass transition is a vital ingredient for optimal control over
their crystallization behavior.
One of the interesting features of glassy hard sphere

mixtures is the fact that their dynamics can be tuned not only
via packing fraction, but also by varying the size and number
ratios of the different species [18–20]. Intuitively, mixing
spheres of different sizes results in different geometrical
constraints on the possible local packings of particles, and
hence this will lead to different local structures. This will
inevitably also impact dynamics, although the exact nature
of the link between structure and dynamics in glassy
materials remains a topic under heavy debate [21–26].
A number of studies have linked dynamical slowdown to
the emergence of local structural patterns, that are favored by
entropy and/or energy and hence likely to survive for a long

time (see, e.g., Refs. [27–33]). This idea of locally favored
structures originates from the seminal work of Frank [34],
who conjectured that glasses may result from the formation
of icosahedral clusters, which are not capable of globally
filling space regularly. More recently, many studies have
focused on quantifying local structure in a variety of ways,
with the aim of finding good predictors for the dynamics of
different glass formers. For comprehensive comparisons of
many of these methods, we suggest, e.g., the recent reviews
in Refs. [23,24]. In general, the emerging picture is that, for
many glass formers, we can identify long-lived structures
whose presence is strongly correlated with the global
slowdown of dynamics in glasses. However, our ability
to predict the mobility of individual particles based on
local structure depends strongly on the system under
consideration [35,36].
In this Letter, we examine the link between local

structure and dynamics in simulations of hard sphere
mixtures. We quantify local order via the tetrahedrality
of the local structure (TLS), a simple idea which consists
of counting the number of tetrahedral clusters around each
particle. As they consist of only 4 particles linked together,
they can be considered as the smallest locally favored
structures. Various order parameters based on local (poly)
tetrahedral order have previously been shown to correlate
with glassy dynamics in soft spheres [37], granular systems
[38], and hard spheres [39,40]. Our results show that TLS
not only has an impressively strong correlation with local
dynamics, but is also able to quantitatively predict the
diffusivity of a vast range of dense hard sphere mixtures.
As perfect icosahedra can be broken down into tetrahedra,
TLS is a natural extension of Frank’s idea, but focuses
on the most elementary building block of the three-
dimensional fluid. Hence, we argue that tetrahedra are
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the slow structures that are ultimately responsible for
dynamic arrest.
We study the structure and dynamics of various mixtures

of hard spheres of different sizes, using event-driven
molecular dynamics simulations [41] at constant number
of particles N, volume V, and energy E. All particles have
identical mass m. The time unit of the simulation is
given by τ ¼

ffiffiffiffiffiffiffiffiffiffiffi
βmσ2

p
, with σ the diameter of the large

spheres (for binary mixtures), or the average sphere size
(for polydisperse mixtures), and β ¼ 1=kBT, with kB
Boltzmann’s constant and T the temperature. All systems
contained at least N ¼ 700 particles, with more particles
used (N ≳ 2000) for the slower systems.
We begin our study by exploring the structure and

dynamics of dense binary hard sphere mixtures, varying
the size ratio q ¼ σS=σL (with σSðLÞ the diameter of the
small (large) spheres), and the composition xL, which
denotes the fraction of large spheres. For each choice of
q and xL, we prepare the system at a packing fraction of
η ¼ 0.575, allow it to equilibrate, and measure the diffusion
time τD ¼ σ2L=D, withD the diffusion coefficient. Note that
we only consider systems which avoid crystallization; as a
result, we cannot probe compositions close to 0 or 1, or size
ratios close to q ¼ 1, which all result into crystallization
into a fcc crystal of (mostly) large spheres. Additionally, in
our larger systems (N ≥ 2000), we observe crystallization
into Laves phases crystals for size ratio q ¼ 0.8 [17,42],
compositions close to 1=3, and high packing fractions
(η≳ 0.57). These crystals are detected using a machine-
learning-based order parameter [43].
The dynamics of binary hard sphere mixtures are known

to vary significantly upon changing the composition xL and
size ratio q [18,19]. Our systematic investigation confirms
this observation, as shown in Fig. 1(a), where we plot
the diffusion time τD as a function of xL for different size
ratios q. Intriguingly, even though the packing fractions of
all systems are the same, τD varies by more than an order of
magnitude. Moreover, the dependence of τD on xL is
nonmonotonic, and shows qualitatively different behavior
for different size ratios. For mixtures with a small size ratio
q≲ 0.75, the diffusion time is a convex function of xL,
showing a clear single minimum. In contrast, for higher size
ratios, a maximum in the diffusion times appears, corre-
sponding to some of the slowest systems we investigated.
The composition and size ratio of a hard sphere mixture

control the geometry of local packings in the fluid. Hence,
the strong variation in diffusivity in Fig. 1(a) hints at strong
variations in the local structure of these different systems as
well. As local icosahedral order is known to slow down
dynamics [23,34,35,44], we measure the fraction of par-
ticles involved in at least one local icosahedral cluster [as
determined via the topological cluster classification algo-
rithm [45,46] ]. As shown in Fig. 1(b), the fraction of
particles in an icosahedral environment indeed shows
behavior similar to that of the diffusion time. However,

Fig. 1(b) clearly does not reproduce all of the behavior of
the diffusion time in Fig. 1(a), and hence it is unlikely that
icosahedra can be seen as the only slow structural motif
in the system. Indeed, recent work has shown that a variety
of complex clusters in hard sphere mixtures can have
long lifetimes [31], and searching for these motifs in our
systems reveals a whole family of clusters that commonly
appear together with perfect icosahedral clusters [see
Supplemental Material (SM) [47] ]. Intuitively, it is there-
fore likely that each of these contributes, to some degree, to
the slowdown of the system.
Interestingly, one feature shared by all of these local

structural motifs is their incorporation of a large number
of smaller tetrahedral clusters: groups of four particles in
which each pair are considered nearest neighbors (here
defined via the same modified Voronoi construction as used
in the topological cluster classification algorithm [45]).
Hence, a natural question to ask is whether the overall
tetrahedrality of the local structure can predict dynamical
behavior. As essentially all particles are involved in

(a)

(b)

(c)

FIG. 1. (a) Diffusion time τD as a function of composition xL
for binary hard sphere mixtures with various size ratios q as
indicated. τ is the time unit of the simulation. (b) Fraction of
particles inside an icosahedral cluster for the same systems. The
inset shows a typical icosahedral cluster. (c) Average number of
tetrahedra per particle. The inset shows a typical tetrahedral
cluster.
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multiple tetrahedral clusters, we quantify tetrahedrality by
measuring the average number ntet of tetrahedra a particle is
involved in, and plot the results in Fig. 1(c) for each binary
mixture. As an example, the central particle in the icosa-
hedral cluster in Fig. 1(b) is part of 20 tetrahedra. This
simple structural order parameter captures the behavior of
the diffusion time almost perfectly, reproducing both the
convexity of τD for low q and its maximum at high q.
Similar agreement is observed at other packing fractions
(see SM [47]). Note that TLS is based on counting the
number of tetrahedra per particle and is fundamentally
different from the parameter introduced in Ref. [37], which
measures the local packing efficiency based on tetrahedral
subvolumes.
The strong correlation between tetrahedrality and dif-

fusivity becomes even clearer when we plot the relationship
between these two quantities directly. In Fig. 2, we plot τD
versus hnteti for all investigated size ratios and composi-
tions, and for a range of packing fractions. For each
packing fraction, ntet provides an excellent predictor of
the diffusion time, revealing an approximately exponential
relationship between τD and hnteti (dashed lines). Note that
just the set of blue triangles in Fig. 2 covers all 60 different
systems in Fig. 1, with vastly different size ratios and

compositions. Moreover, this data collapse is not restricted
to binary systems: polydisperse systems fall on the same
lines for all investigated polydispersities, ranging from 1%
to 20% (closed symbols in Fig. 2). This strongly suggests
that this behavior is universal for all mixtures of hard
spheres of roughly similar sizes. Note that for more extreme
size ratios than the ones studied here, demixing could occur
due to stronger depletion effects [49].
Interestingly, we can approximately collapse the data for

all packing fractions in Fig. 2 by assuming the diffusion
time follows a Vogel-Fulcher-Tamman-like [50] relation,

τD ¼ τ0ðηÞ exp
�

αhnteti
η−1 − η−1g

�
; ð1Þ

where τ0ðηÞ, α ≃ 0.03, and ηg ≃ 0.598 are fit parameters,
with only τ0 dependent on the packing fraction. For the
structural relaxation time τα, this relation does not apply
as a consequence of the well-known violation of the
Stokes-Einstein relation that occurs in glassy systems
[21,28,51,52] (see SM [47]). As the inset of Fig. 2 shows,
rescaling the data according to this fit indeed results in an
approximate data collapse. However, the assumption of one
universal value for ηg, for all combinations of size ratio and
composition is likely not physical, as it is unlikely that the
diffusion time diverges at the same packing fraction ηg for
all mixtures. Indeed, additional simulations show that we
can equilibrate some of our (less tetrahedral) systems at
packing fractions close to and even beyond ηg (see SM
[47]), and hence Eq. (1) must break down for sufficiently
high η. Nonetheless, the data collapse indicates that Eq. (1)
approximately captures the increased sensitivity of the
dynamics to tetrahedrality as the packing fraction increases.
Thus far we have examined the relationship between

globally averaged TLS and diffusivity. We now turn our
attention to the impact of tetrahedral clusters on dynamics at
a local level. To this end, we explore the relationship
between the number of tetrahedra ntetðiÞ a given particle i
is involved in and the absolute distance δri over which it
moves in a given time interval δt. In Figs. 3(a) and 3(b), we
show a typical snapshot of one of our slowest noncrystall-
izing systems, with particles colored by either their tetrahe-
drality [Fig. 3(a)] or their displacement after a time interval
δt ¼ 200τ in a typical trajectory [Fig. 3(b)]. There is clear
evidence of correlation between the two quantities, with
regions of low tetrahedrality matching regions of high
mobility (red), and vice versa (blue). However, examining
the displacement in a specific trajectory provides only a
limited view of particle mobility. After all, in a given
trajectory, the ability of a particle to move depends not
only on its environment but also on the initial velocities of all
particles. To average out this thermal noise, we measure the
dynamic propensity Di of a particle: its average absolute
displacement, taken over an ensemble of simulations starting
from the same initial configuration [35,37,53]. In Fig. 3(c),

FIG. 2. Diffusion time for all investigated hard sphere mixtures
as a function of tetrahedrality. Different colors indicate different
packing fractions. Within each packing fraction, open symbols
correspond to binary mixtures with different size ratios and
compositions. Closed symbols are polydisperse systems with
different packing fractions. The dashed lines are exponential fits
to the binary data for each packing fraction. The inset shows the
approximate data collapse obtained by rescaling the data accord-
ing to Eq. (1).
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we color each particle according to Di (again taken at
δt ¼ 200τ), and indeed reveal a striking correlation between
ntet and Di. Clearly, local tetrahedrality is an excellent
predictor for the dynamics of a particle in the near future.

This correlation can be quantified explicitly by calculat-
ing the Spearman’s rank-order correlation between ntetðiÞ
andDi. In Fig. 3(d), we plot this correlation as a function of
the time interval δt for both the small and large particles.
At very short timescales (δt≲ 0.1τ), before any particles
escape their cages, there is little correlation between local
TLS and dynamic propensity. At intermediate timescales,
we find a strong negative correlation between ntetðiÞ and
Di, confirming that particles involved in fewer tetrahedra
are more mobile. Finally, for timescales approaching the
diffusion time τD ≈ 104τ, the memory of the initial con-
figuration is lost, the initial tetrahedral clusters are broken
up (see SM [47]) [54], and the correlations start decaying
back to zero. An examination of these correlations in other
hard sphere mixtures provides similar results, with weaker
correlations for systems with higher diffusivity (see SM
[47]). In faster systems, dynamics are less heterogeneous,
and hence less predictable based on local structure.
The level of correlation between TLS and dynamic

propensity demonstrated outperforms most of the purely
local observables previously investigated [24]. Moreover,
as shown previously for other local order parameters
[24,35], the predictive power of TLS can be enhanced
by performing a local averaging of ntet. To this end, we
define ntetði; rcÞ as the mean value of ntetðjÞ for all particles
j found within a sphere of radius rc around particle i
(including i itself). This is illustrated in Fig. 3(e), in which
we have colored particles by their value of ntetði; rc ¼ 2σÞ.
As one might expect, this results in smoother domains of
high tetrahedrality, which correlate yet more strongly with
the dynamical propensity shown in Fig. 3(c). The corre-
sponding Spearman’s correlation coefficients for the small
particles are plotted in Fig. 3(f) for three different cutoff
radii rc. This correlation is optimized for rc ¼ 2σ, at a
value of ≈0.63. In Ref. [35], similarly strong correlations
between dynamical propensity and (larger) locally pre-
ferred structures were found for the Wahnström model
glass former [55], but not for several other model glass
formers, such as the Kob-Andersen mixture [56]. Using
TLS, we find similar results for these models (see
SM [47]).
The results in this Letter paint an elegant and compre-

hensive picture of the relationship between local structure
and dynamics in hard sphere mixtures. On the local level,
examining tetrahedrality reveals large-scale regions of
particles involved in a large number of tetrahedra, corre-
sponding directly to areas of low mobility. Globally, the
tetrahedrality directly predicts diffusivity at each inves-
tigated packing fraction, resulting in a data collapse of a
vast variety of hard sphere mixtures onto one exponential
curve using only two global fit parameters. This demon-
strates that within this family of hard sphere mixtures,
tetrahedra play a predictable and universal role in determin-
ing dynamics. In comparison, a similar data collapse in
recent work on a (more varied) set of systems [25] required

(a)

(c)

(e) (f)

(d)

(b)

FIG. 3. (a–(c) Snapshot of a glassy system at packing fraction
η ¼ 0.58, size ratio q ¼ 0.85, and composition xL ¼ 0.3, with
particles colored according to different criteria: (a) according to
the number of tetrahedra ntetðiÞ a particle is involved in, with red
particles involved in fewer tetrahedra, and blue particles in more,
(b) according to the absolute displacement δri after a time interval
δt ¼ 200τ in one trajectory, with red indicating fast particles and
blue indicating slow ones, (c) according to the dynamic propen-
sity Di over the same δt. In all snapshots, pure gray indicates the
average for both large and small particles. (d) Spearman’s rank
correlation between the number of tetrahedral clusters a particle is
involved in ntet and either its displacement δri (open symbols) or
its dynamic propensity Di (closed symbols), measured over a
time interval δt. (e) Same snapshot, but colored by average
tetrahedrality over a spherical region of radius rc ¼ 2σ around
each particle. (f) Correlation between locally averaged tetrahe-
drality and Di for different radii rc of the averaging region.
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multiple fit parameters per system, limiting its predic-
tive power.
These predictions can be directly tested in experimental

realizations of colloidal hard sphere mixtures, using, e.g.,
confocal microscopy [57–62]. Our results may impact
attempts to realize the self-assembly of binary Laves phases
[17,63], for which the stability region is in the regime
where dynamics are extremely slow. On the theoretical
side, the exponential dependence of global dynamics on
tetrahedrality is strongly reminiscent of theoretical descrip-
tions of glasses in terms of activation energies for collective
rearrangement [64] and random first-order transition theory
[21,65,66]. Most importantly, our results demonstrate that
the dynamics of hard sphere mixtures can be predicted
purely by looking for the most fundamental three-dimen-
sional building block for the fluid: the simple tetrahedron.
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