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A choreographic time crystal is a dynamic lattice structure in which the points comprising the lattice
move in a coordinated fashion. These structures were initially proposed for understanding the motion of
synchronized satellite swarms. Using simulations, we examine colloids interacting with a choreographic
crystal consisting of traps that could be created optically. As a function of the trap strength, speed, and
colloidal filling fraction, we identify a series of phases including states where the colloids organize into a
dynamic chiral loop lattice as well as a frustrated induced liquid state and a choreographic lattice state. We
show that transitions between these states can be understood in terms of vertex frustration effects that occur
during a certain portion of the choreographic cycle. Our results can be generalized to a broader class of
systems of particles coupled to choreographic structures, such as vortices, ions, cold atoms, and soft matter
systems.
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Crystalline states arise throughout nature and are char-
acterized by their symmetries. Since these structures are
static in time, they can be described by a single snapshot.
Recently, there have been proposals for dynamic crystals
containing points that move in a synchronized fashion such
that a single time snapshot does not reveal all the sym-
metries in the system. These structures are called choreo-
graphic crystals [1], and they are composed of a collection
of points that undergo a series of repeated moves to form
varying patterns that recur over time. In some such systems,
the ground states themselves are also periodic in time,
forming what are called time crystals [2,3]. Generally, time
crystal systems must be driven out of equilibrium and
contain some form of dissipation, so they are not in a true
ground state. Nevertheless, there is growing interest in
creating and studying the properties of classical [2–6] and
quantum [7–9] time and choreographic crystals in con-
densed matter, atomic, and even cosmological systems
[10,11]. Choreographic crystals represent a new type of
structure, and there are many open questions, including
how to realize these states, what their properties are, and
whether they could be coupled to other systems.
Here, we examine a system of dynamic traps that form a

choreographic crystal coupled to an assembly of colloidal
particles. There have beenmany studies of colloidal trapping
on static crystalline substrates [12–19] or quasiperiodic
lattices [20,21], showing melting and commensurate-
incommensurate transitions. Studies of the dynamics of
colloids driven over such crystalline substrates reveal lock-
ing of the colloid motion to a substrate lattice symmetry
direction [22–26], depinning of incommensurate kinks and
antikinks [27–30], and a diverse array of other dynamical
phenomena [31,32]. Individual traps can be dynamically

controlled and moved [33] or flashed on and off [34,35], so
with appropriate rules for translation, it should be feasible to
create a choreographic lattice of optical traps that couple to
colloidal particles. Beyond colloids, optical trapping lattices
have been created for cold atom systems [36,37], ions [38],
vortices in Bose-Einstein condensates [39], and vortices in
type-II superconductors [40], so similar choreographic
lattices could be created for these systems. Choreographic
trap arrays thus represent a new type of lattice for studies of
commensuration effects and dynamics.
In our simulations, we find three generic phases of

colloid dynamics depending on the strength and speed of
the traps as well as the filling fraction or ratio of the number
of colloids to the number of traps. In the weakly coupled
regime, the colloids are temporarily trapped and organize
into a dynamical chiral loop crystal. In the partially coupled
regime, where a given colloid is dragged by a trap for a
varied length of time before decoupling from the trap, a
liquidlike state appears. In the strong coupling regime, the
colloids are permanently locked to the traps and themselves
form a choreographic crystal. At higher filling fractions, we
observe phases in which traps containing multiple colloids
interact with interstitial colloids in the regions between
traps, while at high trap velocities, the colloids decouple
from the traps. We map out a dynamic phase diagram as a
function of the trap strength and velocity. We also show that
the transition into and out of the liquid phase is the result of
a vertex frustration effect, similar to that found in triangular
artificial spin ice [41–43], which appears during the portion
of the choreographic cycle when the trap spacing reaches its
minimum value.
Simulation.—We conduct simulations of pointlike

colloidal particles in a two-dimensional box of size
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L × L
ffiffiffi

3
p

=2 with L ¼ 96.0 and periodic boundary con-
ditions. The sample contains Ntrap ¼ 576 trapping sites of
radius Rtrap ¼ 1.0 which are initially arranged in a 24 × 24
hexagonal lattice with lattice constant a ¼ 4.0, large
enough to ensure that traps never overlap when they are
translated. To create the choreographic crystal, we use the
rules for motion introduced in Ref. [1]. The traps are
divided into three subsets α1;2;3, as shown schematically in
Fig. 1(a). Each subset moves in a direction given by the
vector ðx; yÞ, which has the value ð−0.5;− ffiffiffi

3
p

=2Þ for α1,
(1,0) for α2 and ð−0.5;þ ffiffiffi

3
p

=2Þ for α3. The traps are
initialized in a hexagonal lattice, as shown in Fig. 1(a), and
each trap moves in a straight line with a velocity vtrap. The
original hexagonal ordering is restored after every τ time
units, where τ ¼ a=ðvtrapΔtÞ and Δt is the size of a
simulation time step. In Fig. 1(b), we illustrate the portion
of the cycle in which the spacing between the traps reaches
its smallest value.
The sample contains Nc colloidal particles, and we

characterize the filling fraction as f ¼ Nc=Ntrap. The
dynamical evolution of the colloids is given by the
following overdamped equation of motion:

1

η

Δri
Δt

¼ Fi
pp þ Fi

trap; ð1Þ

where η ¼ 1 is the viscosity. The interaction potential
between two charged colloidal particles i and j at a distance
of rij is given by a screened Coulomb interaction:
Fij
pp ¼ exp ð−r=r0Þr̂ij=r2, where r0 ¼ 4.0 is the screening

length. The interaction between colloid i and trap k is given
by a simple finite-range harmonic spring: Ftrap ¼
ðFtraprik=RtrapÞr̂ik, where Ftrap is the maximum force at
the edge of the trap and rik is the distance between the
colloid and the center of the trap. Our dimensionless unit of

length is r0=a, and our dimensionless timescale is τ ¼ 1=η,
where we take η ¼ 1.0. The colloids are initialized at
random locations with a specified minimum possible
spacing between adjacent colloids. The traps are then set
into motion, and the system eventually settles into a
steady state.
Results.—We first consider the weak coupling regime

with Ftrap ¼ 0.4 and vtrap ¼ 0.5 at a filling of f ¼ 1.0,
where individual colloids can be trapped for a short time
but move a distance less than a trap lattice constant. In
Fig. 2(a), we illustrate the colloid and trap locations at the
beginning of the simulation when the colloid positions are
disordered. After several cycles of trap motion, the colloids
organize into the crystalline state shown in Fig. 2(b), where
the diffusion drops to zero and the colloids move in a
nonoverlapping pattern of counterclockwise triangular
loops, a state that we term a dynamic chiral lattice
(DCL). The size of the colloidal orbits decreases with
decreasing trap strength and falls to zero when Ftrap ¼ 0,
where the colloids form a static hexagonal lattice. At
Ftrap ¼ 0.7, shown in Fig. 2(c), each trap permanently
captures one colloid [44]. The image of the trajectories of
some of the colloids in Fig. 2(d) indicates that each colloid
follows a straight line path. Here, the traps are strong
enough to overcame the colloid-colloid repulsive force
even when the traps reach their point of closest approach,
so the colloids themselves form a choreographic lattice
(ChL). Although there is no net drift motion averaged over
all of the colloids, individual colloids undergo ballistic
motion, so that the mean squared displacement dðtÞ ¼
N−1

c
PNc

i jriðtÞ − riðt0Þj2 obeys dðtÞ ∝ t2 in the ChL phase.
When Ftrap is increased further, we observe the same
structure and dynamics.
At intermediate trapping strengths between the DCL and

ChL states, the system forms a partially coupled or
disordered state in which each colloid is dragged by a trap
over a distance of several lattice constants before it becomes
dislodged. We show a snapshot of this state in Fig. 2(e) for
Ftrap ¼ 0.54, where the colloidal positions are disordered in
the steady state. The corresponding trajectories of some of
the colloids in Fig. 2(f) show that there is short-time
ballistic behavior when the colloids are dragged; however,
the longer-time behavior is diffusive with dðtÞ ∝ t.
The transition between the DCL and the ChL states can

be understood by considering the portion of the cycle in
which the traps are closest together, shown in Fig. 1(b). We
can think of this structure in terms of a vertex picture
similar to that found in triangular colloidal spin ice systems
[41–43]. An occupied trap is the equivalent of a particle
close to the vertex. When vertex states are labeled by the
total number of particles that are close to the vertex (0-, 1-,
2-, or 3-in), the ice-rule-obeying state contains 1- and 2-in
vertices. In Fig. 3, we illustrate the trap and colloid
positions at the point of closest approach along with the
corresponding triangular colloidal spin ice vertex state.

FIG. 1. (a) Schematic of a choreographic lattice composed of
three subsets of traps α1;2;3 that move at a velocity vtrap in a
synchronized manner according to the rules given in Ref. [1].
Each subset of traps moves in a different direction defined by the
vector ðx; yÞ which has the value ð−0.5;− ffiffiffi

3
p

=2Þ for α1 (red),
(1,0) for α2 (blue), and ð−0.5;þ ffiffiffi

3
p

=2Þ for α3 (green), as
indicated by the arrows. The traps never overlap, and they reform
the original triangular lattice ordering shown in (a) every τ time
units. (b) Image of the trap positions at the point in the cycle
where the spacing between traps reaches its smallest value.
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When all three traps are occupied, as in Fig. 3(a), the
resulting 3-in state is the highest-energy configuration due
to the repulsive colloid-colloid interactions, while if all
three traps are empty, as in Fig. 3(b), the corresponding
vertex is in the lowest-energy 0-in state. For large Ftrap, the
trapping energy overwhelms the colloid-colloid inter-
actions, stabilizing the 3-in vertex state and producing
the ChL phase with ordered dynamics. For small Ftrap, the
colloidal interaction energy dominates and stabilizes the 0-
in vertex state, producing the ordered DCL state. At
intermediate Ftrap, 1- and 2-in vertices are favored, where
the 2-in vertex has higher energy, and the system is highly

degenerate similar to the triangular colloidal spin ice. There
is only one possible arrangement of a system full of 3- or 0-
in vertices, but many possible arrangements of a system full
of 1- and 2-in vertices. For example, two distinct 2-in vertex
configurations appear in Figs. 3(c) and 3(d). The resulting
frustration at intermediate trap strength prevents the col-
loids from reaching a repeatable ordered state, since, each
time the traps reach their point of closest approach, a
different energy-equivalent ice-rule-obeying colloid con-
figuration can appear, giving a disordered structure. For
longer-range interactions spanning a distance of multiple
vertices, the ice degeneracy could be lifted, causing new
types of time-repeated dynamical states to occur. Other
types of choreographic crystals might not have the same
frustration effects during any portion of the cycle or might
exhibit choreographic crystals that are frustrated during the
entire cycle.
Transitions between the states can occur with changing

the trap speed or strength, since the coupling between the
colloids and the traps weakens when vtrap increases. To
characterize this, in Fig. 4(a), we plot hvci=vtrap ¼
N−1

c
PNc

i jvij=vtrap for the system in Fig. 2. If
hvci=vtrap ¼ 1.0, all the colloids are trapped and match
the trap velocity in the ChL state. For hvci=vtrap < 0.3, the
colloids are only temporarily trapped and the DCL state
appears, while for 0.3 < hvci=vtrap < 0.9, the system is in
the disordered state. A plateau near hvci=vtrap ¼ 0.33
corresponds to a prevalence of 1-in states with 1=3 of
the traps occupied. Even in the DCL state, hvci=vtrap > 0,
since the traps are occupied for at least a short period of

FIG. 2. Trap positions (open circles) and colloid positions
(dots) in a portion of the sample at vtrap ¼ 0.5 for a filling of
Nc=N trap ¼ 1.0. Black lines in (b), (d), and (e) are the trajectories
of a subset of the colloids. (a) The weak coupling regime at
Ftrap ¼ 0.4 in the initial disordered state. (b) The same system
after it has organized to a crystalline state. Each colloid executes a
small counterclockwise triangular loop, forming a DCL.
(c) Ftrap ¼ 0.7, where each trap permanently captures one colloid.
As shown in (d), the colloids now move in straight lines and form
a ChL. (e) The frustrated liquid state at Ftrap ¼ 0.54, where the
system disorders and colloids can be dragged various distances as
a function of time, as indicated by the trajectories shown in (f).
Videos illustrating the dynamics of these phases are available in
Supplemental Material [44].

FIG. 3. Schematics (left) of the vertex states at the point of
closest approach of the traps along with schematics (right) of the
matching artificial spin ice vertex state. (a) For large Ftrap, the
colloids remain inside the traps, 3-in vertices are stable, and
the ChL state appears. (b) For small Ftrap, all of the colloids
escape from the traps, 0-in vertices are stable, and the DCL state
appears. (c),(d) For intermediate Ftrap, 2-in vertex states are
stable; however, there are three equivalent ways to form a 2-in
state, two of which are illustrated in (c) and (d). As a result, the
system is frustrated and becomes disordered.
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time. As Ftrap increases, the onset of the ChL phase shifts to
lower values of vtrap.
In Fig. 4(b), we plot a dynamic phase diagram as a

function of Ftrap versus vtrap for the system in Fig. 4(a),
indicating the regions where the DCL, ChL, and disordered
phases occur. The boundaries in Fig. 4(b) can be under-
stood by considering the nearest-neighbor forces at the
distance of closest approach Rc ¼ 2. In the ChL phase, all
of the particles must remain trapped at closest approach,
which occurs when Ftrap ≥ ηvtrap þ FppðRcÞ. The ChL
phase should occur for Fp > 1.1516 when vtrap ¼ 1.0, in
agreement with Fig. 4(b). In the DCL state, all the particles
must be out of the traps at closest approach, which occurs
when Ftrap ≤ ηvtrap − 2 sinð60°ÞFppðRcÞ. For vtrap ¼ 1.0,
the DCL phase should appear when Ftrap ≤ 0.737, in
agreement with the figure.
For changing filling f, we find the same general features

described above when f ≤ 1, while interstitial colloids
appear when f > 1. For a sufficiently large trap strength, all
the colloids are eventually trapped, and the ChL phase
appears with clusters of n=Ntrap colloids at each trap, where
n is the time-averaged number of trapped colloids. When
the traps are too weak to capture f colloids apiece, more
complex states appear where multiply occupied traps
coexist with interstitial colloids. As f increases, the

disordered phase grows in extent. In Fig. 4(c), we plot
n=Ntrap versus Ftrap for varied filling. A series of plateaus
occur at n=Ntrap ¼ 1=f for large Ftrap when no interstitial
colloids are present. Jumps in n=Ntrap occur when multiple
trap occupancy and commensuration effects overlap. For
example, at n=Ntrap ¼ 0.5, 1.0, and 1.5, commensurate
ordered states appear, while the higher-order steps near
n=Ntrap ¼ 2.5, 3.0, and 4.0 correspond to partially ordered
states at higher fillings. Additional ordering near integer
and rational f was observed in systems with static pinning
such as vortices in type-II superconductors [45–47]. In
Fig. 4(d), we plot a dynamic phase diagram as a function of
Ftrap versus n=Ntrap, highlighting the strongly coupled
regime or ChL phase, the weakly coupled DCL regime,
and the intermediate regime consisting of disordered states
in which multiply trapped colloids can coexist with
interstitial colloids.
We consider a fixed colloid-colloid interaction strength

and range where nearest-neighbor interactions dominate, as
in most experiments. If longer-range interactions become
important, the disordered phase could grow in extent, but
additional long-range ordered phases could also arise.
Experimentally, this system could be realized with time-
dependent [35], moving [48–50], rastered [51], or dynami-
cally manipulated [52,53] optical traps. To achieve artificial
periodic boundary conditions, a trap that reaches the
sample edge would be shut off and replaced by a trap
on the other side of the sample, with colloid capture and
release occurring in a bath area surrounding the sample.
Alternatively, traps could be driven back and forth peri-
odically through the sample.
Summary.—We have examined a choreographic lattice

of traps that move in a synchronized fashion without
overlap. When the traps are coupled to an assembly of
colloidal particles with repulsive screened Coulomb inter-
action, we observe several different dynamical regimes: a
dynamically ordered chiral crystal state in which the
colloids are temporarily trapped, follow loop orbits, and
have zero net diffusion; a strongly coupled state in which
the colloids themselves form a choreographic lattice with
ballistic motion; and an intermediate frustrated liquid state
with long-time diffusive behavior. The different states can
be understood by mapping the closest approach of the traps
to triangular colloidal spin ice vertices. At intermediate
coupling, multiple vertex states with equivalent energies are
possible, producing frustration and a disordered configu-
ration similar to that found in triangular colloidal spin ice.
Our results could be generalized to a wide variety of
choreographic time crystals with dynamical substrates and
represent a new particle assembly-periodic substrate system
in which commensuration effects, dynamic phases, and
melting can be explored using optical traps or other
methods to create a translating trap array. Similar results
should appear for vortices, cold atoms, and ions coupled to
a choreographic lattice.

FIG. 4. (a) hvci=vtrap versus vtrap for the system in Fig. 2 with
f ¼ 1 and Ftrap ¼ 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1,
1.2, 1.3, and 1.4, from bottom to top. The ChL phase appears
when hvci=vtrap ¼ 1.0, the DCL phase has hvci=vtrap < 1=3, and
outside these ranges is the frustrated liquid state. (b) Dynamic
phase diagram as a function of Ftrap versus vtrap. Dashed lines are
theoretical estimates for the boundaries between the ChL, DCL,
and intermediate frustrated liquid states. (c) The average number
n=Ntrap of colloids in each trap versus Ftrap for vtrap ¼ 0.5 and
filling fractions of f ¼ 0.5, 0.75, 1.0, 1.25, 1.5, 2.0, 2.5, 3.0, 3.5,
and 4.0, from bottom to top. (d) Dynamic phase diagram as a
function of Ftrap versus n=Ntrap. Dashed lines indicate boundaries
between the ChL, DCL, and intermediate frustrated liquid states.
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