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Colloids dispersed in electrolytes and exposed to an electric field produce a locally polarized cloud of
ions around them. Above a critical electric field strength, an instability occurs causing these ion clouds to
break symmetry leading to spontaneous rotation of particles about an axis orthogonal to the applied field, a
phenomenon named Quincke rotation. In this Letter, we characterize a new mode of electrokinetic
transport. If the colloids have a net charge, Quincke rotation couples with electrophoretic motion and
propels particles in a direction orthogonal to both the applied field and the axis of rotation. This motion is a
spontaneous, electrokinetic analogue to the well-known Magnus effect. Typically, motion orthogonal to a
field requires anisotropy in particle shape, dielectric properties, or boundary geometry. Here, the
electrokinetic Magnus (EKM) effect occurs for spheres with isotropic properties in an unbounded
environment, with the Quincke rotation instability providing the broken symmetry needed to drive
orthogonal motion. We study the EKM effect using explicit ion, Brownian dynamics simulations and
develop a simple, continuum, analytic electrokinetic theory, which are in agreement. We also explain how
nonlinearities in the theoretical description of the ions affect Quincke rotation and the EKM effect.
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A simultaneously translating and rotating object can
experience a lift force that propels it orthogonally to its
initial direction of motion. This “Magnus effect” is well
known for macroscopic objects at large Reynolds numbers
[1], but is not typically associated with microscopic objects
at small Reynolds numbers. For symmetric objects in
isotropic media, like spherical colloids in a Newtonian
fluid, linearity of Stokes flow forbids coupled rotation and
translation [2]. Khair and Balu reported a Magnus effect for
charged spheres of prescribed rotational and translational
velocity in an electrolyte due to asymmetry of the local ion
cloud [3]. Because there is not a simple way to simulta-
neously control translation and rotation, field-orthogonal
propulsion in electrolytes is usually generated by engineer-
ing a break in symmetry [4,5], like synthesizing particles
with anisotropic shape [6–9], dielectric properties [10,11],
or charge distributions [12] or fabricating walls [13–17] or
ratcheted channels [18,19].
In this Letter, we describe a spontaneous electrokinetic

Magnus (EKM) effect for isotropic, uniformly charged,
polarizable colloids in a symmetric, binary electrolyte
(Fig. 1, movies S1–S3 in the Supplemental Material
[20]). The particles polarize in an electric field E0 of
strength E0 ≡ jE0j, producing a locally polarized ion
cloud in the direction opposite the field. Above a critical
field strength Ec, this orientation becomes unstable, and
fluctuations drive the ionic double layer to break symmetry,
generating hydrodynamic forces that rotate the colloids
about a random axis orthogonal to E0. This is the
well-known phenomenon called Quincke rotation [21].
We have discovered that Quincke rotation couples with

electrophoresis to propel a charged particle orthogonally to
both the applied field and the axis of rotation, an electro-
kinetic Magnus effect. The EKM effect occurs for bulk,
isotropic particles, with the Quincke rotation instability
providing the broken symmetry necessary for orthogonal
motion.
Quincke rotation has been well studied in the context of

“electrohydrodynamics” (EH), using the Taylor-Melcher
leaky dielectric model [22,23], which does not explicitly
account for ions, yielding predictions for the critical field
Ec and angular velocity Ω [21,24–27],

FIG. 1. Left: A negatively charged colloid in an electrolyte with
positive (red) and negative (blue) ions polarizes the ion cloud in
an electric field E0 as it moves electrophoretically at velocity Uk.
Right: Above Ec, the Quincke rotation instability causes the
particle to rotate with angular velocity Ω about a random axis
orthogonal to E0 and drives the particle orthogonally to both the
applied field and axis of rotation with velocity U⊥, the electro-
kinetic Magnus effect.
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where εf and εp are permittivities of the fluid and particle,
σf and σp are conductivities, τMW¼ðεpþ2εfÞ=ðσpþ2σfÞ,
εpf≡ðεp−εfÞ=ðεpþ2εfÞ, and σpf≡ðσp−σfÞ=ðσpþ2σfÞ.
This scaling of Ω with E0 has been confirmed in numerous
experiments [17,25,27–31]. However, for highly polar-
izable (εp → ∞) particles, EH predicts Ec ¼ Ω ¼ 0, which
is not consistent with our simulations. Because EH
approaches contain no information about the ionic double
layer, they cannot produce translations driven by electro-
osmotic flows [23], nor do they offer predictions in terms of
experimentally controllable parameters like salt concen-
tration or particle size. In this work, we analyze Quincke
rotation and the EKM effect in the context of “electroki-
netics” (EK), where the dynamics of ions are explicitly
incorporated [32], using both simulation and continuum
theory.
Simulation method.—A detailed description is in the

Supplemental Material [20]. Here, we offer a brief over-
view. We carry out Brownian dynamic simulations [33,34]
of an ideally polarizable, spherical colloid of radius a and
uniform, fixed, surface charge density q0 in an electrolyte
with ions of charge �qi and hydrodynamic radius ai
(≈0.4 nm for simple salts [35]), each at number density
ni, dispersed in a fluid of permittivity εf and viscosity η and
subject to an electric field E0. The net charge of the colloid
is known, but its induced polarization charge distribution is
unknown and varies over time. At each time step, we solve
the many-bodied electrostatic problem posed in the
Supplemental Material [20] for this charge distribution.
The equations of motion for the colloid and ions are
integrated in the overdamped limit, taking into account
hydrodynamic interactions and Brownian forces [36–41].
Dimensionless variables, indicated by a tilde, are con-
structed by choosing ai to be the length scale, the thermal

energy kBT to be the energy scale, the ion diffusion time
τD ≡ 6πηa3i =kBT (≈1 ns) to be the timescale, andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εfaikBT

p
(≈0.2e) to be the charge scale. This sets the

field scale to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=εfa3i

q
. We set the total volume fraction

of ions to ϕi ¼ 0.10 (≈300 mM) and the ion-ion Coulomb
energy at contact to q2i =8πεfaikBT ¼ 1, which yields q̃i ≈
5 (≈1.60 × 10−19 C, i.e., monovalent ions). Counterions
were added to balance the net particle charge, and the total
number of ions was around 105. The electrolyte was
equilibrated around the colloid at E0 ¼ 0, and then the
field was turned on for up to 200τD.
Continuum theory and simulation results.—Anuncharged,

ideally polarizable particle in an electric field E0 ≡ E0êz
instantaneously (compared to τD) polarizes with an initial
induced surface charge distribution qinitðθ;ϕÞ ¼ 3εfE0 cos θ
and dipolemomentS0 ≡

R
S dSrqinit ¼ 4πa3εfE0, where r is

the position relative to the center, and θ and ϕ are azimuthal
and zenith angles. Ions are drawn to opposite induced
charges, forming a polarized double layer of thickness

κ−1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εfkBT=2niq2i

q
(Fig. 1).As ions approach the surface,

their electric field induces additional surface charge in the
particle, which pulls in more ions, etc., and the particle and
double layer “charge up” over time [Fig. 2(a)]. Squires and
Bazant [42,43] showed that if a ≫ κ−1, there is an inner
region near the surface where ions distribute according to
the Poisson-Boltzmann (PB) equation, −ε∇2ψ 0 ¼ ρ, and an
outer regionwhere the electrolyte is charge neutral,∇2ψ ¼ 0.
ψ 0ðrÞ and ψðrÞ are the inner and outer potentials and ρðrÞ ¼
qi½nþðrÞ − n−ðrÞ� is the charge distribution of the electrolyte
in terms of ion concentrations n�ðrÞ. If a ≫ κ−1, angular
gradients in PB can be neglected, and at a particular θ and ϕ,
ψ 0ðhÞ is the solution to the one-dimensional PB equation (see
Supplemental Material [20]) in a normal coordinate hwith a
surface charge density qðθ;ϕ; tÞ, the additional induced
charge excess qinit. We assume the inner region equilibrates
much faster than the timescale on which q varies, so that ψ 0

(a) (b) (c)
(d)

FIG. 2. Particle and ion cloud dipole moments S̃ (a) and angular velocity Ω̃ (b) over time t̃ from a simulation with ã ¼ 60 and
Ẽ0 ¼ 0.3. The steady-state dipole strength (c) and ionic conductivity σ̃ (d) for rotating particles, nonrotating particles, and pure
electrolyte for ã ¼ 30. For E0 > Ec, the “stationary” dipole in (c) was extracted from an exponential fit to the stationary regime, like the
dashed line in (a). In (d), σ ¼ niq2i =3πηai is the dilute theoretical value [42].
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satisfies PB in a pseudosteady sense. Angular and time
dependence of ψ 0 come solely from the boundary condition
qðθ;ϕ; tÞ.
The inner potential as h → ∞, denoted ψ 0

p − ζ, where ψ 0
p

is the particle surface potential and ζ is the potential drop
across the double layer (i.e., the zeta potential), must equal
the outer potential ψ at the surface. Because the particle is
ideally polarizable with ψ 0

p ¼ 0, ψðr ¼ a; θ;ϕ; tÞ ¼
−ζðθ;ϕ; tÞ. Therefore, ψ in the neutral region of the
electrolyte can be expressed as

ψðr; tÞ ¼ −E0 · r

�
1 −

a3

r3

�
þ
X
lm

ClmðtÞ
rlþ1

Ylmðθ;ϕÞ; ð2Þ

where ClmðtÞ ¼ −alþ1
R
Γ dΓζðθ;ϕ; tÞYlmðθ;ϕÞ, Ylm is

the spherical harmonic of degree l and order m, and Γ
is the unit sphere. ψ satisfies the initial conditions with
ζðθ;ϕ; 0Þ ¼ Clmð0Þ ¼ 0. In the bulk electrolyte, there is a
local current density jðr; tÞ ¼ σEðr; tÞ due to mobile ions,
where E≡ −∇ψ and σ is the electrolyte conductivity. The
current entering the double layer, −jða; θ;ϕ; tÞ · r̂, induces
equal and opposite surface charges qðθ;ϕ; tÞ in the particle
to satisfy inner region electroneutrality. If the particle also
rotates with angular velocity Ω, we can construct a
conservation equation for the induced charge

∂qðθ;ϕ; tÞ
∂t ¼ σE · r̂ −∇s · qΩ × r; ð3Þ

where∇s is the surface gradient. The particle is torque-free,
so Ω is set by the balance of the electric torque driving
rotation, Si × E0 ¼ −

R
S dSrq ×E0, where Si is the net

dipole of the ion cloud, and the opposing hydrodynamic
torque, −8πηa3Ω, yielding Ω ¼ −

R
S dSrq ×E0=8πηa3

[2,26,44]. The induced charge and zeta potential are related
through PB, admitting a charge-voltage relation qðζÞ and
differential capacitance CðζÞ≡ dq=dζ, and Eq. (3) can be
written solely in terms of ζ,

CðζÞ∂ζ∂t ¼ σE · r̂þ∇s ·qðζÞ
8πηa3

�Z
S
dSrqðζÞ×E0

�
× r: ð4Þ

We choose coordinates where E0 ¼ E0êz and Ω ¼ Ωêy
and convert Eq. (4) into an equation involving only the Clm
coefficients by multiplying by Ylm and integrating over Γ.
For ζqi=kBT ≪ 1, we use the Debye-Huckel (DH) solution
to the PB equation with a Stern layer of thickness ai to
account for the ions’ finite distance of closest approach,

q ¼ εfκζ=ð1þ κaiÞ; C ¼ εfκ=ð1þ κaiÞ: ð5Þ

Setting ai ¼ 0 recovers the original DH solution.
ClmðtÞ ¼ 0 for l ≥ 2, and the three equations for l ¼ 1
admit three steady-state solutions where ∂Clm=∂t ¼ 0,
with angular velocities

Ω¼ 0;� 1

τc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
E0

Ec

�
2

−1

s
; Ec≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ησð1þ κaiÞ2

ε2fκ
2a2

s
; ð6Þ

where τc ≡ εfκa=2σð1þ κaiÞ is the charging timescale
[42,43].
A detailed derivation of Eq. (6) is in the Supplemental

Material [20]. The Ω ≠ 0 solutions are only real above a
critical field strength Ec. A linear stability analysis (see
Supplemental Material [20]) reveals that the stationary
(Ω ¼ 0) solution is stable below Ec and unstable above Ec,
while the rotating solutions are stable for E0 > Ec. These
EK expressions (6) are similar to the EH expressions (1) but
in terms of experimentally controllable parameters, with τc
replacing τMW and dependence on κa. In particular, Ec

decreases with particle size as Ec ∼ a−1, unlike Eq. (1)
which is independent of a. For large fields, Eq. (6) becomes
Ω ≈ E0

ffiffiffiffiffiffiffiffiffiffi
σ=2η

p
and is independent of a, consistent with EH

predictions. Equation (6) also shares features with EH
expressions for Quincke rotation of dielectric shells and
vesicles [45–48], where here the double layer acts as a thin
dielectric capacitor. For typical values in water at 10 mM
ionic strength, Ec can be written as a voltage drop across
the particle, Ec ≈ 0.09 V=a, i.e., a 1 μm particle has
Ec ≈ 900 V=cm. Though such large field strengths might
be difficult to achieve experimentally in aqueous electro-
lytes, larger particles have lower Ec (a 10 μm particle has
Ec ≈ 90 V=cm), a more electrochemically stable organic-
based electrolyte can be chosen, or alternating current (ac)
fields can be used. The stable, steady-state particle dipole is

S̃ ¼

8>>>>><
>>>>>:

ð1þ κa
2ð1þκaiÞÞêz; E0 ≤ Ec

� κa
2ð1þκaiÞ

Ec
E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðEc

E0
Þ2

q
êx

þ
�
1þ κa

2ð1þκaiÞ ð
Ec
E0
Þ2
�
êz; E0 > Ec

; ð7Þ

where S̃≡ S=S0. Figures 2(a)–2(b) show the charging and
rotation dynamics in simulations, while Figs. 3(a)–3(b)
compare steady-state values between simulations and
theory. Below Ec, the particle dipole is aligned with E0

and charges monotonically over τc to a value independent
of E0. Above Ec, the particle is initially nonrotating, but
eventually ions accumulated at the poles become unstable
and spill over the sides of the particle. The ions’ hydro-
dynamic interactions with the surface rotate the particle.
The dipole strength S̃≡ jS̃j drops [Fig. 2(c)] and breaks
symmetry to point off-axis relative to E0. S̃ decreases with
Ẽ0 as charge is convected away, and S̃ → 1 at large Ẽ0. Our
theory underpredicts Ec and overpredicts Ω from simu-
lations, which also occurs with experiments [30,31], but
overall agrees. Because rotation facilitates ion convection,
it increases the electrolyte’s conductivity σ compared to
pure electrolyte [Fig. 2(d)], increasing with E0 as Ω
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increases. This conductivity increase above Ec due to
Quincke rotation has also been measured in experiments
[49]. The response of the ion cloud lags that of the particle,
leading to coupled oscillations in S and Ω [Fig. 2(a)]. The
ions can be imagined as imparting “inertia” to the colloid
dipole, and the dynamics become chaotic at very large
fields [25,31].
The induced qinit þ q contributes no net charge to the

particle. If the particle has a net charge, it is due to fixed
charges q0 ¼ εfκζ0=ð1þ κaiÞ, where ζ0 is the net zeta
potential. Because PB is linear with the DH approximation,
ζðθ;ϕ; tÞ for a neutral particle can be superimposed
with ζ0. The fluid velocity at the particle surface is
u ¼ −εfðζ0;D þ ζDÞEt=η, where ζ0;D ¼ q0=εfκ and ζD ¼
q=εfκ are voltage drops across the diffuse region of the
double layer and Et is the field tangent to the surface [42].
The particle’s translational velocity is obtained by integrat-
ing u over its surface, U ¼ −

R
S dSu=4πa

2 [50],

U¼

8>><
>>:

εfζ0;DE0

η êz E0 ≤Ec

εfζ0;DEc

η

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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E0
Þ2

q
êxþ Ec

E0
êz

�
E0 >Ec

; ð8Þ

BelowEc, the particlemoves electrophoreticallywith awell-
known expression in the thin double layer limit [51] that is
independent of a and agreeswith our simulations [Fig. 3(c)].
Above Ec while rotating, the velocity has a component
orthogonal to the field, i.e., the EKM effect. The Magnus
velocity, U⊥ ≡ U · êx, increases with E0, saturating at a
valueU⊥;max ≡ εfζ0;DEc=η that agrees with our simulations
for small q̃0 [Fig. 3(d)]. For a 1 μm particle with
ζ0;D ≈ 50 mV, U⊥ ≈ 3 mm=s, which is fast compared to
diffusion, kBT=6πηa2 ≈ 1 μm=s. Equation (8) predicts
U⊥;max ∼ Ec ∼ a−1, while our simulations show that
U⊥;max generally increases with a. Our theory predicts that
the electrophoretic velocity, Uk ≡ U · êz, decreases with
increasing E0 > Ec as the ion cloud dipole aligns orthogo-
nally toE0 andEt becomes symmetric about êx, prohibiting
translation in the êz direction. However, we observe a linear
increase in Uk with E0, and the classical electrophoresis
formula forE0 ≤ Ec seems to hold for simulations aboveEc
while the particle rotates.
Nonlinear effects.—The charge conservation equation (3)

neglects surface conduction, angular diffusion, and trans-
lational convection, which become important at large Ẽ0

[42,52]. The analysis assumes a thin double layer and uses

(a) (b) (c) (d)

FIG. 3. The dipole strength S̃ (a), angular velocity Ω̃ (b), electrophoretic velocity Ũk (c), and Magnus velocity Ũ⊥ (d) for different
particle sizes ã (different shapes and line styles) and net charges q̃0 (different colors) as a function of external field Ẽ0 from simulation
(symbols) and theory (lines).

(a) (b) (c) (d)

FIG. 4. (a) Surface charge density q̃ as a function of zeta potential ζ̃ for various ion models, accounting for Stern layers. Simulation
(symbols) and theoretical results (lines) for the dipole strength S̃ (b), angular velocity Ω̃ (c), and Magnus velocity Ũ⊥ as a function of
external field Ẽ0 for ã ¼ 15. In (b), the unstable stationary solutions above Ec are shown in black.
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the Debye-Huckel approximation, which is inaccurate at
large ionic strength and ζ. Finally, fluctuations of the
particle, surface charge, and ion cloud are not incorporated.
Despite these shortcomings, there is fair agreement with
our simulations where these complicated effects are
accounted for. To address some of these issues, non-
linearities in the description of the ions can be incorporated
into the Poisson-Boltzmann equation, which modify qðζÞ
andCðζÞ [Fig. 4(a)]. In addition to the linear Debye-Huckel
(DH) solution, we consider the Gouy-Chapman (GC)
model, in which ions do not interact but obey the nonlinear
PB equation, and the Carnahan-Starling (CS) model that
accounts for steric repulsions among ions [35]. Details are
discussed in the Supplemental Material [20]. Because the
Gouy-Chapman capacitance CðζÞ increases with ζ, the
particle dipole increases with E0 in the stationary regime
[Fig. 4(b)]. On the other hand, the Carnahan-Starling
capacitance decreases with ζ, so S̃ decreases with E0.
The rotational instability is driven by the dipole strength, so
GC has a lower Ec than DH, while CS has a larger Ec than
DH [Fig. 4(c)]. Above Ec, the induced ζ generally
decreases with E0, so both the GC and CS solutions
approach the DH solution at large E0. If the particle has
a net charge, the double layer screens both q and q0. For
linear DH, these situations can be superimposed, and q0
does not affect charging or Quincke rotation. This super-
position fails for nonlinear models, and qðζÞ and CðζÞmust
be replaced with qðζ0 þ ζÞ and Cðζ0 þ ζÞ in Eq. (4). For
small q̃0 with ζ0 ≪ ζ, this contributes negligibly to the
theory and simulations. As q̃0 increases and ζ0 ≳ ζ, the net
charge hinders charging and rotation, suppressing them
altogether for large q̃0 in the simulations [Figs. 4(b)–4(c)].
In the theory, the charged GC solutions begin with a larger
Cðζ0Þ > Cð0Þ and have larger S̃ and smaller Ec than the
uncharged case, opposite the trends observed in the
simulations. The charged CS solutions begin with a smaller
Cðζ0Þ < Cð0Þ and have smaller S̃ and larger Ec than the
uncharged case, consistent with, but less pronounced than,
simulation results. At large E0, solutions collapse to the DH
values, so q0 does not affect S̃ or Ω̃. However, the Magnus
velocity is still sensitive to the ion model through ζ0;D
[Fig. 4(d)]. For a given q0, the GC ζ0;D and Ec are smaller
than the DH ζ0;D and Ec, soU⊥;max is smaller. Similarly, the
CS ζ0;D and Ec are larger than the DH values, so U⊥;max is
larger.
Conclusion.—We reported a spontaneous electrokinetic

Magnus effect for polarizable colloids in an electrolyte. We
used electrokinetic methods to investigate the phenomenon,
including explicit ion Brownian dynamics simulations and
analytic results from a continuum theory, overcoming
shortcomings of electrohydrodynamic methods. The ana-
lytic expressions offer useful scaling predictions to guide
experiments, while the simulations provide a high-fidelity
model of the complicated physics involved. We envision
applications for the EKM effect in self-propelling active

matter, which typically involves complicated particle
designs [53–56] or living organisms [57,58]. Because
the Magnus velocity is decoupled from the field, it offers
a tunable self-propulsion mechanism using simple materi-
als. Quincke rotors are already used in active matter but
require boundaries [15,16] or anisotropic particles [9]
whereas the EKM effect occurs for spheres in unbounded
domains. Other applications include controlling electro-
rheological responses with rotating particles [30,59,60] and
leveraging the Magnus velocity for particle separation.
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