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We demonstrate deterministic control of the nearest and next-nearest neighbor coupling in the unit cell of
a square lattice of microcavity exciton-polariton condensates. We tune the coupling in a continuous and
reversible manner by optically imprinting potential barriers of variable height, in the form of spatially
localized incoherent exciton reservoirs that modify the particle flow between condensates. By controlling
the couplings in a 2 × 2 polariton cluster, we realize ferromagnetic, antiferromagnetic, and paired
ferromagnetic phases and demonstrate the potential scalability of the system.
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Control over a novel type of amany-body optical network,
the exciton-polariton condensate lattice, is highly desirable,
partly due to its application in integrated optical circuitry [1]
and potential for quantum computation [2,3], as well as a test
bed for the study of emergent phenomena in large complex
systems; these range from the Kibble-Zurek mechanism [4],
spontaneous magnetization [5], topological phases [6],
to reverse ground state annealing [7]. Indeed, exciton-
polaritons (from here on “polaritons”) have already found
a role in various memory processing elements, such as logic
gates [8], transistors [9,10], switches [11], routers [12], and
diodes [13], ranging from cryogenic to room-temperature
operation conditions. The accuracy with which one can
deterministically control the interactions between individual
polariton condensates reflects the experimental control with
which one can design advanced polaritonic devices and
access interesting phases of interacting many-body systems.
Polariton condensates [14] are coherent ensembles of

bosonic light-matter quasiparticles that, in the mean field
treatment, are described by a macroscopic wave function
dictated by a complex nonlinear Schrödinger equation.
Interactions between trapped polariton condensates can be
accurately quantified using the tight-binding treatment,
where the condensates can display synchronization [15],
Josephson oscillations [16], frequency combs [17], and
other intriguing effects stemming from their non-Hermitian
and strong nonlinear character. Relevant to the current
study, the interaction strength between spatially separated
polariton condensates can be dramatically enhanced by
realizing them, not in a trapping geometry, but instead as
stable ballistically expanding optical fluids sustained by the
gain of the excitation source [18–20]. Recently, a study on
the interactions between expanding polariton condensates
revealed that their dynamics are dictated by time-delayed
equations of motion similar to the Lang-Kobayashi
equation used to describe coupled laser systems [19,21].

Therefore, designing a network of these expanding polar-
iton condensates brings in a new platform for the study of
nonlinear oscillatory systems used to describe chaos,
neurological functions, social behavior, and synchroniza-
tion [22]. On the other hand, inspired by recent develop-
ments on Ising machines based on optical parametric
oscillators [23,24], networks of polariton condensates
can potentially be designed to tackle computationally
challenging problems in an analog manner by associating
the degrees of freedom of the condensates (i.e., amplitude,
phase, and polarization) to appropriate spin Hamiltonians
[7] that can be mapped to computationally complex tasks
[25]. Either case would require programmable coupling
strengths between condensates. Recently, gates with dis-
sipation in between condensate nodes were proposed for
arbitrary interaction control in condensate lattices [26].
In this Letter, we demonstrate an all-optical method to

tune and measure the coupling between adjacent polariton
condensates. Different from lattices of polariton condensates
realized in lithographically written structures [27], here
we optically imprint networks of polariton condensates
using tightly focused nonresonant optical beams in a
planar microcavity shaped by a spatial light modulator
(SLM). This allows for both precise and rewritable control
of the excitation profile that makes it possible to drive
condensate networks of various geometries in a microcavity.
Furthermore, we additionally imprint optically incoherent
exciton reservoirs of controllable density along the edges
connecting polariton condensates. The repulsive interaction
between reservoir excitons and condensate polaritons acts
as a barrier that modifies the polariton flow between
adjacent condensates [9,28,29]. We show that, by changing
the excitation power of these excitonic barriers, and sub-
sequently their potential height, we can tune the phase
of the polariton flow between condensates, altering their
interference. We implement this concept to demonstrate a
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programmable 1 × 2, 2 × 2, and 4 × 4 polariton condensate
clusters.
We use a strain compensated 2λ GaAs-based planar

microcavity with embedded three pairs of In0.08Ga0.92As
quantum wells described in Ref. [30]. The sample is held at
≈4 K within a closed-cycle helium cryostat and pumped
nonresonantly using a continuous wave (cw) single-mode
laser at 1.5578 eV, at an exciton-photon detuning of
−3.8 meV. The polariton photoluminescence (PL) is col-
lected using a long-pass filter. The excitation profile is
controlled with a reflective phase-only SLM, which mod-
ulates the incident laser beam. We start with the simplest
building block of the condensate lattice-a “polariton dyad.”
Figure 1(a) shows the pump profile consisting of two laser
spots that are tightly focused (FWHM ≈ 1.6 μm) with a
microscope objective of NA ¼ 0.42 and separated by a
distance d ≈ 15.7 μm. Each of the two condensates is
driven at a power of 1.3 × Pthr, where Pthr is the threshold

power (corresponding to threshold intensity of ≈418 or
52 kW=cm2 per quantum well) determined for a single
isolated condensate, occurring at 1.4485 eV. The construc-
tive interference in the real-space PL at the center between
the two condensates [Fig. 1(b)] and the bright central
vertical fringe in the reciprocal-space PL [white dashed line
in Fig. 1(c)] indicate in-phase locking of the dyad [20].
Here, we denote in-phase and antiphase configurations
with parallel and antiparallel white arrows (spins) resem-
bling ferromagnetic (FM) and antiferromagnetic (AFM)
types of arrangement of phases between the condensates.
Continuous tuning of the separation distance in a polariton
dyad reveals parity-flip transitions [19]. In this Letter, we
tune to a dyad separation distance resulting in a stationary
phase configuration.
Next, we investigate the effect of an optically induced

barrier on the coupling of the dyad. A third laser beam injects
nonresonantly an exciton reservoir in the middle of the dyad.
We use cross-circularly polarized excitation for the barrier
with respect to the condensate pumps in order to minimize
gain due to overlap of the condensatewave functionswith the
barrier. The cross-circular configuration allows for a wider
tunability of the barrier exciton reservoir density before
barrier-induced nonlinearities set in, i.e., before condensa-
tion occurs at the barrier. Figure 1(d) shows the pumping
profile for a polariton dyad in the presence of a weak
barrier pumped below threshold with Pbar ¼ 0.36 × Pthr.
The resulting interference patterns of the polariton PL in real
space [Fig. 1(e)] and reciprocal space [Fig. 1(f)] reveal that
the phase configuration in the presence of the barrier has
switched from FM to AFM.We note that the barrier injects a
negligible amount of polaritons compared to the condensate
pump spots; see the Supplemental Material [31] for further
information.
The phase difference between two coupled ballistically

expanding condensates can be extracted from the resulting
interference patterns in both real and reciprocal space.
However, in the case of more complex geometries and
couplings that may lead to frustration in the system, phase
retrieval from intensity maps becomes less well defined,
while at the same time, accuracy in the phase retrieval is
important for the application of polariton lattices as
simulators. In the following, we develop a homodyne
interferometric technique that utilizes the U(1) symmetry
in the classical phase configuration of coupled polariton
condensates, which allows for phase retrieval of all the
condensates across a lattice.
The schematic in Fig. 2(a) shows the experimental

configuration of the homodyne technique. An additional
weak cw excitation laser (FWHM ≈ 2 μm), resonant to
the polariton condensate, is used to fix the phase of
one condensate. The linewidth of the resonant excitation
(≈100 kHz) is more than 5 orders of magnitude narrower
than that of the polariton condensate. Both pump
and resonant seed are synchronously acousto-optically

(e)

(f)

(b)

(c)

(a) (d)

FIG. 1. (a) Intensity profile of two nonresonant excitation spots
used to imprint a polariton dyad in a FM configuration with
corresponding normalized PL intensity shown in both (b) real and
(c) reciprocal space. Introducing an optically imprinted weak
barrier in between the two condensates (d) switches the phase
configuration of the dyad to an AFM state as shown (e),(f) by the
change in the interference pattern. White scale bars correspond to
10 μm and 1 μm−1 in real and reciprocal space, respectively. Red
dashed circles in (a),(d) denote barrier position. White dashed
vertical lines in (c),(f) are guides to the eye. Color scale in (a)–(f)
is logarithmic and saturated at 7 × 10−4 for (b), 1.25 × 10−3 for
(c),(e),(f) and 2 × 10−2 for (a),(d).
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modulated. The emission of the whole polariton network is
interfered with the resonant seed beam using a Mach-
Zehnder interferometer. This allows us to extract the full
phase map of the lattice with off-axis digital holography
[34,35]. We apply this technique both to the polariton dyad
(Fig. 1) and to the case of a single condensate, i.e., when one
of the excitation pump spots of the dyad is blocked. The
effect of the barrier onto the radial outflowof polaritons from
a single condensate can be seen in Fig. 2(b) forPbar ¼ 0 and
Fig. 2(c) for Pbar ¼ 0.36 × Pthr. The red circles indicate,
from right to left, the positions of a single pumped
condensate, the barrier, and the mirrored location of the
condensate with respect to the barrier. We subtract the
obtained phase maps with and without the barrier and
extract the phase shift Δφ of the condensate wave function
at the location of the leftmost circle as a function of the
barrier pump power. Figure 2(d) shows a continuous shift in
Δφup to−π up to the samebarrier pumppower that switches
the parity of the dyad (Fig. 1). Figures 2(e) and 2(f) show the
obtained phase maps corresponding to the pumping profiles
of Figs. 1(a) and 1(d). A similar dependency of the phase
shift under an optically generated potential was reported in
Ref. [36] for polaritons propagating along a lithographic
waveguide.
From the simplest configuration of the polariton dyad,

we expand to a more complex system, the unit cell of a
square lattice, wherein the coupling between condensates
occurs not only with the nearest neighbors, but also with

next-nearest neighbors. Figure 3(a) shows the pumping
profile of the 2 × 2 polariton cell. The pump beams are
cocircularly polarized and fixed at 1.34 × Pthr. The dis-
tribution of the polariton real-space PL [Fig. 3(b)] reveals
AFM coupling between the four nodes, also corroborated
by the reciprocal-space PL [Fig. 3(c)]. Here, the lattice
constant (≈21 μm) is chosen such that polariton conden-
sation occurs at a single energy state.
We introduce a cross-circularly polarized pump in the

center of the square that is kept at0.5 × Pthr power [Fig. 3(e)].
From the interference pattern in both real- and reciprocal-
space PL we detect a switch from an AFM to a FM
configuration [Figs. 3(f) and 3(g)]. This transition reveals
that the central pump alters the coupling between next-
nearest neighbor condensates (diagonal flows) dictating the
resulting stable condensate phase configuration; see the
Supplemental Material [31] for more information. Next,
we add two additional barriers at the left and right edges of
the cluster [Fig. 3(i)] to demonstrate control of nearest
neighbor couplings. The intensity of the side barriers is
≈30% of the central barrier. Figures 3(j) and 3(k) show the
real- and reciprocal-space polariton PL in the presence of all
three barriers. From the interference pattern, we observe a
switching from all FM to a paired ferromagnetic (PFM)
coupling. This state is analogous to the compass state
reported previously for both scalar [7,37] and spinor polar-
iton condensates [5]. We note that the transition between
different phase ordered states is not digital, but instead

reference

barrier

pump

SLM
/4

/4

seed/4

/2

/2

PBS

MD SBP

LP

(a)

Pbar (Pthr)
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FIG. 2. (a) Scheme of the setup that allows for imprinting of intercalated arrays of polariton condensates and potential barriers,
through two separate SLMs, giving all-optical control of couplings. An additional weak laser beam (“seed”) resonant to the PL is
coupled through a dichroic mirror (DM) onto one of the condensates, fixing its phase, and is subsequently used as a reference wave for
interferometric homodyne measurements to implement phase readout. A long-pass (LP) filter strongly attenuates the residual pump laser
signal. Measured phase maps of a single condensate (rightmost red circle) pumped at P ¼ 1.3 × Pthr subject to a weak barrier (central
red circle) with (b) Pbar ¼ 0 and (c) Pbar ¼ 0.36 × Pthr. (d) The measured phase shift Δφ integrated within a circle of 1 μm radius
(leftmost red circle) at a position d ≈ 15.7 μm away from the condensate shows a continuous decrease as a function of barrier pump
power. The extracted phase maps (e),(f) for the two configurations in Fig. 1 confirm the observed FM and AFM configurations by 0 and
π phase differences between the two condensate centers. The white scale bar in (c) [applying also to (b)] amounts for 5 μm, while the
scale bar in (f) [applying also to (e)] amounts for 10 μm.
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gradual as a function of barrier strength. Stationary phase
configurations, such as presented in Figs. 1 and 3, are
separated by nonstationary (cyclical) states (as a function
of barrier strength), which can be regarded as a superposition
of the aforementioned stable configurations. This is in
agreement with recent observations [19], where regimes of
single- and multimode condensates were found depending
on the pumpinggeometry. In theSupplementalMaterial [31],
we show this transition between different phases (AFM, FM,
and PFM) with gradually increasing barrier heights. Corres-
ponding extracted real-space condensate phase maps are
shown in Figs. 3(d), 3(h), and 3(l).
All experimental results are reproduced by numerical

integration of the generalized Gross-Pitaevskii equation
(see Supplemental Material [31]). We also reproduce all
observations using a recently developed discretized model

describing the interacting expanding polariton condensates
as time-delayed coupled oscillators [19], i.e.,

i _ψn ¼
�
Ωþ

�
gþ i

R
2

�
Xn þ αjψnj2

�
ψn

þ
X
m

Jnmeiβnmψmðt − dnm=vÞ; ð1Þ

_Xn ¼ −ðΓR þ Rjψnj2ÞXn þ P: ð2Þ

Here ψn represents the phase and amplitude of the nth
condensate, Xn their respective reservoirs, and the sum runs
over the nearest and next-nearest neighbors. The complex
self-energy of each condensate is captured in Ω. The
blueshift due to interactions and stimulated scattering rate
(i.e., optical gain) from the reservoir is given by g and R,
respectively. α describes polariton-polariton interaction
strength, ΓR is the decay rate of the exciton reservoir, P
is the nonresonant pump power, Jnm quantifies the coupling
strength between neighboring condensates, βnm describes
the coupling phase, v is the average phase velocity of
polaritons outside their pump spots, and dnm is the distance
between neighbors. We use similar parameters as in
Ref. [19] with the exception of the coupling phase
βnm, which depends on the barrier strength according to

Figs. 2(b)–2(d), i.e., βnm ¼ βð0Þnm þ Δφ with phase βð0Þnm in
case of no barrier. For the case of the dyad given in Fig. 1,
the spectrally resolved PL [see Fig. 4(a)] displays a gradual
transition of the dyad mode from a FM to an AFM energy
branch as a function of barrier strength, separated by a
desynchronous domain, shown experimentally in the(c) (g) (k)

(b) (f) (j)

(a) (e) (i)

(d) (h) (l)

FIG. 3. (a),(e),(i) Real-space intensity map of the nonresonant
excitation geometry with barrier beams enclosed by red dashed
circles. (b),(f),(j) Real- and (c),(g),(k) reciprocal-space PL of the
polariton condensates generated by the different barrier configu-
rations (a),(e),(i), respectively, showing AFM, FM, and PFM
phases. Corresponding real-space phase maps are given in (d),(h),
(l) with white arrows denoting the magnetic arrangement of the
cluster. Logarithmic color scale in (i) applies to (a),(e),(i) and
saturated at 2 × 10−2; logarithmic color scale in (j) applies to (b),
(f),(j) and saturated at 3 × 10−4; logarithmic color scale in
(k) applies to (c),(g),(k) and saturated at 4.5 × 10−4. The color
scale in (d),(h),(l) is the same as in Fig. 2.

FIG. 4. (a) Spectrally resolved PL of the polariton dyad (see
Fig. 1) as a function of barrier pump power. (b) Numerically
calculated spectra as a function of increasing coupling phase β ¼
βð0Þ þ Δφ obtained by integrating Eq. (1) with random initial
conditions. Energy is scaled with respect to the ground state of the
lower polariton branch. Parameters: d ¼ 15.7 μm, ℏΩ ¼ ð1.45−
i0.5Þ meV, ℏα ¼ 0.1 μeV, ℏR ¼ 0.5 μeV, ℏg ¼ 0.5 μeV,
v ¼ 1.3 μmps−1, P¼100ps−1, ΓR¼0.05ps−1, ℏJ0 ¼ 1.1 meV,
k0 ¼ ð1.9þ i0.012Þ μm−1, and βð0Þ ¼ −0.8 rad.
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Supplemental Material [31], where both FM and AFM
modes are populated. We find that the dominant effect of
the barrier is to introduce a phase lag Δφ to the transmitted
condensate signal traveling to its nearest neighbor, which
ultimately reverses the sign of the complex coupling when
Δφ ¼ −π. Numerically resolving the energies of Eq. (1) by
varying the phase lag βnm indeed produces the same
behavior in energy as seen in experiment [see Fig. 4(b)].
The phase lag is mutual in the dyad and we can write for
brevity β12 ¼ β21 ¼ β. We conclude that optical control of
the coupling phase with the barrier allows for control of
both real and imaginary parts of the complex coupling
between the nodes in networks of polariton condensates.
This technique can be readily applied to extended lattices,
as shown in the Supplemental Material [31].
In conclusion, we have developed a new strategy of

optically tuning the interactions between polariton conden-
sates in a given two-dimensional network. This approach
opens up the path to simulation of synchronization, periodic
orbitals, and chaos in more complicated structures with
desired nearest neighbor couplings. Moreover, we demon-
strated a new experimental technique, which allows scanless
readout of the condensates relative phases. Implementation
of homodyne interferometry is advantageous for phase
retrieval in cases where lattice geometry leads to nontrivial
phase coupling between adjacent condensates.
The data that support the findings of this study are

openly available from the University of Southampton
repository [38].
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