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We consider a C6 invariant lattice of magnetic moments coupled via a Kondo exchange J with a 2D
electron gas (2DEG). The effective Ruderman-Kittel-Kasuya-Yosida interaction between the moments
stabilizes a magnetic skyrmion crystal in the presence of magnetic field and easy-axis anisotropy.
An attractive aspect of this mechanism is that the magnitude of the magnetic ordering wave vectors,
Qν (ν ¼ 1, 2, 3), is dictated by the Fermi wave number kF: jQνj ¼ 2kF. Consequently, the topological
contribution to the Hall conductivity of the 2DEG becomes of the order of the quantized value, e2=h, when
J is comparable to the Fermi energy ϵF.
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The discovery of magnetic skyrmion crystals (SkX)
envisioned by Bogdanov and Yablonskii [1,2] in chiral
magnets, such as MnSi, Fe1−xCoxSi, FeGe and Cu2OSeO3

[3–7] sparked the interest of the condensed matter
community at large and spawned efforts in multiple
directions. Among those, identifying the basic ingredients
for stabilizing SkX in other materials is one of the
most pressing challenges because new stabilization
mechanisms are typically accompanied by novel physical
properties. For instance, the vector chirality is fixed
in the magnetic skyrmions of chiral magnets, such as the
so-called B20 compounds; while it is a degree of
freedom in the SkX of centrosymmetric materials,
such as BaFe1−x−0.05ScxMg0.05O19, La2−2xSr1þ2xMn2O7,
Gd2PdSi3, and Gd3Ru4Al12 [8–14]. In the former case,
the underlying spiral structure is stabilized by a competition
between ferromagnetic exchange and the Dzyaloshinskii-
Moriya interaction [15,16]. In contrast, the spiral ordering
of centrosymmetric materials arises from competition
between different exchange couplings or dipolar interactions
[17–21].
To date, most magnetic SkX have been reported in

metals, where the interplay between magnetic moments and
conduction electrons enables novel response functions,
such as the well-known topological Hall effect [22–25]
and the current-induced skyrmion motion [26–29]. The
topological Hall effect is a direct consequence of the Berry
curvature acquired by the reconstructed electronic bands. In
the adiabatic limit, the momentum space Berry curvature is
controlled by a real space Berry curvature that is propor-
tional to the skyrmion density: each skyrmion produces an
effective flux equal to the flux quantum Φ0. Consequently,
Hall conductivities comparable to the quantized value
(e2=h) can in principle be achieved if the ordering wave
vector of the SkX is comparable to the Fermi wave vector

kF. As we demonstrate in this Letter, this condition
can be naturally fulfilled in f-electron systems where the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction is
mediated by conduction electrons [30–32]. Our results
are potentially relevant for the rare earth based materials
Gd2PdSi3 and Gd3Ru4Al12 that contain a magnetic field
induced SkX phase in their phase diagrams [10–14].
We first demonstrate that the magnetic susceptibility

of a 2D electron gas (2DEG) on a C6 invariant lattice
has a maximum at 2kF whenever the single-electron
dispersion relation,

ϵk ≈
1

2m
ðk2 þ uk4Þ; ð1Þ

has a negative quartic correction u≡ w=k2F < 0. Under this
condition, a small easy-axis anisotropy is enough to
stabilize a magnetic-field induced SkX, which is approx-
imately described by the superposition of three spirals with
ordering wave vectors Qν (ν ¼ 1, 2, 3), that are related by
�2π=3 rotations. Given that jQνj ¼ 2kF, the resulting SkX
produce a very large Hall conductivity (of order e2=h) for a
Kondo exchange of J=ϵF ≈ 0.3. This condition can only be
fulfilled in the dilute limit ϵFηðϵFÞ ≈ ðk2Fa2=2πÞ ≪ 1,
where ηðϵÞ ≈m=ð2πÞ is the density of states and a is
the lattice constant. Because we are interested in the regime
of weak Kondo effect, here we only consider the classical
limit of the local magnetic moments.
We start by considering the 2D Kondo lattice model

(KLM) for classical magnetic moments:

H¼
X
k

X
σ

ðϵk−μÞc†kσckσþJ
X
i

X
αβ

c†iασαβciβ ·Si; ð2Þ

where the operator c†iσ (ciσ) creates (annihilates) an
itinerant electron on site i with spin σ, and c†kσ (ckσ) is
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the corresponding Fourier transform. ϵk is the bare electron
dispersion with chemical potential μ. J is the exchange
interaction between the local magnetic moments Si and the
conduction electrons (σ is the vector of the Pauli matrices)
and jSij ¼ 1.
In the weak-coupling limit, JηðϵFÞ ≪ 1, the interaction

between local moments is described by the RKKY model:

HRKKY ¼ −J2
X
k

χkSk · S−k; ð3Þ

with

χk ¼ −
2

VBZ

Z
dq

fðϵqþkÞ − fðϵqÞ
ϵqþk − ϵq

; ð4Þ

Sk ¼
1ffiffiffiffi
N

p
X
i

eik·riSi; ð5Þ

where N is the number of lattice sites, and fðϵÞ is the Fermi
distribution function.
In general, the RKKY interaction depends on the details

of the Fermi surface (FS). However, for small filling
fraction, the electronic dispersion relation of C6 invariant
systems can be approximated by Eq. (1) and the FS is
circular. In absence of the quartic term (w ¼ 0), the
susceptibility is flat below 2kF [33] [see Fig. 1(a)],

χk ¼
m
π

h
1 − Θðp − 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2=pÞ2

q i
; ð6Þ

with p≡ k=kF. The discontinuity of ∂kχk at k ¼ 2kF is
related to the long-range nature of the RKKY interaction (it
decays as 1=r2 in real space). The resulting RKKYmodel is
highly frustrated because any spiral ordering with wave
number q ≤ 2kF is a ground state.
The frustration is partially lifted by a finite quartic term

and the magnetic susceptibility becomes

χk ¼
m

πjwjp2λðp;wÞ

"
2 arctan

1

λðp; wÞ

− 2Θðp − 2Þ arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2=pÞ2

p
λðp; wÞ

þ arctan
j1þ wp2j

jwjp2λðp;wÞ

− arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ wp2Þ2 þ 4wðwþ 1Þ

p
jwjp2λðp;wÞ

#
; ð7Þ

for −1 ≪ w < 0 and p2 < 2=jwj, where λðp; wÞ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1þ 2=ðwp2Þj

p
. As shown in Fig. 1(a), χk is maximized

on the ring k ¼ 2kF, where the function χk is nonanalytical.
As we will see below, the control parameter for the stability
of the SkX is the ratio χ2kF=χk¼0. According to Eq. (7),
χ2kF=χk¼0 is determined by w≡ uk2F for kF ≪ 1, i.e., w
becomes the control parameter in the long wave length
regime.
For concreteness, we consider a triangular lattice (TL)

with hopping amplitudes ft; t2; t3g for the first, second,
and third nearest neighbors (from now on, we will set t2 ¼
t3 ¼ 0 unless specified otherwise):

ϵk ¼ −2t
�
cos kx þ 2 cos

kx
2
cos

ffiffiffi
3

p
ky
2

�

− 2t2

�
cos ð

ffiffiffi
3

p
kyÞ þ 2 cos

�
3kx
2

�
cos

� ffiffiffi
3

p
ky
2

��

− 2t3½cos ð2kxÞ þ 2 cos kx cos ð
ffiffiffi
3

p
kyÞ�: ð8Þ

The mass m, and w are obtained by expanding ϵk near
k ¼ 0:

m¼ 1

3ðtþ3t2þ4t3Þ
; w¼−

k2F
16

tþ9t2þ16t3
tþ3t2þ4t3

: ð9Þ

The resulting magnetic susceptibility, shown in Fig. 1(b),
confirms that χk is maximized on the k ¼ 2kF ring. The
degeneracy of the ordering wave vectors along the ring
direction is lifted by lattice anisotropy terms of order
Oðk6Þ: while the angular dependence of χk is very small,
a careful numerical integration of Eq. (4) shows only six
discrete peaks (�Qν¼1;2;3) with the same amplitude [see
inset of Fig. 1(b)].
An immediate question is what magnetic structure is

stabilized in the presence of magnetic field and easy-axis
anisotropy [34]. It has been shown that SkX can arise in
hexagonal frustrated Mott insulators whose exchange
interactions lead to a similar set of six maxima in the
magnetic susceptibility [1,17,18,20]. Indeed, the phase
diagram of these materials can be described with a generic
Ginzburg-Landau (GL) theory, which only assumes that the

(a) (b)

FIG. 1. Susceptibility χk for different dispersions. (a) Long
wavelength limit Eq. (1), using VBZ ¼ ð2πÞ2; (b) TL Eq. (8) with
2kF ¼ jb1j=4. The inset shows the peak positions of χk of the TL
in the first BZ, where fb1; b2g are the reciprocal space basis
vectors.
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magnetic susceptibility is maximized over a ring of wave
vectors of the same magnitude and that it is an analytic
function of k [19]. The nonanalytical behavior of χk at k ¼
2kF violates the second assumption, and raises the question
of whether the SkX phase can still be stabilized in RKKY
systems. Motivated by this question, we add the corre-
sponding Zeeman and anisotropy terms to the TL RKKY
Hamiltonian:

Htotal¼HRKKYþH0; H0 ¼−H
X
i

SziþD
X
i

ðSzi Þ2: ð10Þ

Our Monte Carlo simulation with Metropolis update on
finite lattices indeed suggests that the orderingwave number
coincides with 2kF at low temperature. However, due to the
highly frustrated nature of the RKKYmodel, theMetropolis
update is not efficient enough to overcome freezing into
metastable states. We then adopt a T ¼ 0 variational
approach, which further confirms that themagnetic ordering
wave vector has magnitude Q ¼ 2kF [35].
Figure 2 shows the T ¼ 0 phase diagrams for 2kF ¼

fjb1j=8; jb1j=6; jb1j=4g including seven different phases,
namely, the vertical spiral (VS), vertical spiral with in-plane
modulation (VS0), 2Q-conical spiral (2Q-CS), 2Q-conical
spiral with unequal in-plane structure factor intensities
(2Q-CS0), up-up-down-down (↑↑↓↓), SkX, and the fully
polarized (FP) phases (see Fig. 3).
The phase diagrams shown in Fig. 2 are similar to the

one obtained from short-range Heisenberg models on
the TL [18], and more generally, from a GL analysis of

the inversion-symmetric magnets [19]. However, there is an
important qualitative difference associated with the stability
of the SkX phase.
A direct comparison between Figs. 2(a) and 2(b)

suggests that the size of the SkX phase depends sensitively
on the ratio χ2kF=χk¼0, which is controlled by the parameter
w from the long wavelength analysis [see Eq. (7)]. To reveal
the role of w, we keep 2kF ¼ jb1j=6 and add a finite t3,
that changes w from −0.023 to −0.013 [see Fig. 2(c)].
The SkX phase shrinks as we decrease jwj while keeping
2kF unchanged [Figs. 2(b) and 2(c)]. Indeed, our varia-
tional approach confirms that the SkX phase disappears
for jwj≲ 0.0115 when using χk given by Eq. (7) (valid for
kF ≪ 1). In other words, the SkX phase is stable in the
mesoscale regime kF >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.0115=jujp

.
This behavior is qualitatively different from the

GL theory, where the phase diagram, including the SkX
phase, remains invariant upon approaching the Lifshitz
transition [19]. The key difference is in the relative differ-
ence between ðχ2kF − χk¼0Þ that determines the saturation
field H0

sat ≡ 2J2ðχ2kF − χk¼0Þ, and ðχ2kF − χknÞ for kn ¼P
ν¼1;3 nνQν (nν are small integer numbers and jknj > Q)

that determines the exchange energy of the higher

(c)

(a)

(d)

(b)

FIG. 2. Phase diagrams of the TL RKKY model with easy-axis
single-ion anisotropy in a magnetic field. We set t2 ¼ t3 ¼ 0
except in (c). (a) 2kF ¼ jb1j=8, which gives χ2kF=χk¼0 ≈ 1.0177,
w ≈ −0.013, H0

sat ≈ 0.0034J2=t; (b) 2kF ¼ jb1j=6, which gives
χ2kF=χk¼0≈1.0323, w≈−0.023, H0

sat≈0.0062J2=t; (c) 2kF ¼
jb1j=6, which gives χ2kF=χk¼0≈1.0211, w≈−0.013, H0

sat≈
0.0046J2=t; (d) 2kF ¼ jb1j=4, which gives χ2kF=χk¼0 ≈ 1.0783,
w ≈ −0.051, H0

sat ≈ 0.016J2=t.

FIG. 3. Spin configurations of phases shown in Fig. 2. The
insets show the in-plane (S⊥) and out-of-plane (Szz) static
structure factors in the first BZ. The solid (dotted) circles
highlight the dominant (subdominant) peaks. The orange mark-
ups in (a),(b) highlight the difference between VS and VS0, i.e.,
absence or presence of the in-plane modulation. The green
markups in insets of (c),(d) show the difference between
2Q-CS and 2Q-CS0: the former is invariant under a mirror
reflection of the xz plane followed by a π rotation along the x
axis, while the latter does not respect this symmetry.
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harmonics present in most of the phases, including the
SkX. In the GL theory, both energy scales remain compa-
rable for Q → 0. In contrast, ðχ2kF − χknÞ becomes much
bigger than ðχ2kF − χk¼0Þ for kF → 0 because the slope of
χk diverges for k → 2kþF . This difference becomes less
important for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.0115=jujp

< kF < 1, explaining why the
phase diagrams of both theories become very similar in the
mesoscale regime.
Figures 2(a) and 2(c) show the phase diagrams obtained

for the same value of w and different values of 2kF
(2kF ¼ jb1j=6 and 2kF ¼ jb1j=8). The difference between
both phase diagrams is produced by small deviations of χk
from the universal expression in Eq. (7). The size of the
SkX phase is bigger for 2kF ¼ jb1j=6 simply because
χ2kF=χk¼0 is bigger.
For large enough 2kF, the long wavelength analysis is

no longer accurate and the phase diagram can become
qualitatively different from the one obtained for small
ordering wave numbers. This is illustrated by Fig. 2(d) for
2kF ¼ jb1j=4: the low field VS and VS0 phases are replaced
with a collinear ↑↑↓↓ ordering, and the low field 2Q-CS0
phase is replaced by the 2Q-CS phase. Interestingly, we
find that the SkX phase remains robust.
The SkX phase induces nontrivial Berry curvature and

anomalous Hall response when coupled to itinerant elec-
trons [22–25]. Figures 4(a) and 4(b) show the folded
unreconstructed electronic band structure (J ¼ 0) and the
FS in the reduced BZ (2kF ¼ jb1j=6). A finite coupling J
opens a gap at the M and K points [Fig. 4(c)]. The lowest
two bands develop nonzero Berry curvatureΩnðkÞ centered
at K and K0, where the electron wave functions have the
largest renormalization [Figs. 4(d) and 4(e)]. We note that
the two lowest bands have the same Chern number: both
Cn ¼ 1 or Cn ¼ −1, where the sign is determined by the
sign of the scalar spin chirality.
Figure 4(f) shows the transverse conductivity σxy [40] of

the TL KLM in the SkX phase with fixed electron fillings.
A large σxy can be achieved even in the weak-coupling
regime (J=t ≪ 1), and its magnitude increases quickly
upon approaching the long wavelength limit. Such a
behavior is opposite to the conventional understanding
based on the strong-coupling or adiabatic limit. The sky-
rmion density is no longer dictated by kF in that limit and it
is typically much smaller than the electron density. Thus, a
larger skyrmion density (bigger Q) produces larger effec-
tive magnetic field and consequently a larger Hall response
in the strong-coupling limit.
The kF-dependence of σxy can be understood in a simple

way. In Fig. 4(b), we see that the FS already occupies 91%
of the folded first BZ. σxy becomes large (of order e2=h)
when the states near K and K0 points (where most of
the Berry curvature concentrates) are pushed below the
Fermi level. This condition is fulfilled when the gap, of
order J, becomes comparable to the energy difference
between ϵK and ϵkF :

J ∼
kF
m

�
2ffiffiffi
3

p kF − kF

�
≈ 0.155

k2F
m

≈ 0.3ϵF: ð11Þ

In other words, in agreement with the result shown in
Fig. 4(f), the value of J required to produce a large
anomalous Hall effect is smaller for smaller values of
kF. In fact, the three curves shown in Fig. 4(f) collapse into
a single curve after rescaling the x axis to J=ðtk2FÞ.
To summarize, we find that the quartic term in the

dispersion of a 2DEG induces susceptibility maxima at
Q ¼ 2kF, which is key to produce a finite saturation field
and to stabilize the spiral ordering that is the basis for
generating SkX via RKKY interactions. The T ¼ 0 phase
diagram includes a sizable SkX phase induced by easy-axis
anisotropy and a magnetic field. The size of the SkX phase
and its stability range is controlled by χ2kF=χk¼0, which is in
turn determined by w for kF ≪ 1. The same electrons

FIG. 4. (a),(b) Electronic band structure and FS of the TL KLM
in the folded first BZ (2kF ¼ jb1j=6) with J ¼ 0. (c)–(e) Elec-
tronic band structure and Berry curvatures of the lowest two
bands in the folded first BZ (2kF ¼ jb1j=6) with J=t ¼ 0.2
and SkX spin configuration. (f) Transverse conductivities
of the TL KLM with SkX spin configurations of different Q,
at fixed electron filling fractions. The horizontal dashed lines
in (a),(c) show the Fermi level for fixed filling nc ≈ 0.0252. We
use SkX spin configuration obtained at fD¼−0.002J2=t;
H¼0.007J2=tg for 2kF ¼ jb1j=4, fD ¼ −0.0015J2=t; H ¼
0.002J2=tg for 2kF ¼ jb1j=6, and fD ¼ −0.0008J2=t; H ¼
0.00117J2=tg for 2kF ¼ jb1j=8.
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which induce the RKKY interaction and the SkX phase,
exhibit a large anomalous Hall counter-response, whose
magnitude depends solely on J=ðtk2FÞ in the weak-coupling
limit. This strong feedback effect distinguishes the stabi-
lization mechanism based on the RKKY interaction
from other mechanisms in which the lattice parameter
of the SkX and the Fermi wave-length are independent
length scales.
We note that the Oðk4Þ correction in the quasi-particle

dispersion relation (1) is not the only way of lifting the spin
susceptibility degeneracy of the 2DEG for k < 2kF. For
example, the electron-electron interactions can also induce
a global maximum of χk at a finite wave number close to
2kF [41–51]. Additional magnetic interactions, such as
short-range superexchange and dipolar coupling can pro-
duce a similar effect. It is also important to note, that four-
spin and higher order interactions, not included in the
RKKYHamiltonian, are naturally generated from the KLM
upon moving away from the weak-coupling limit [21,52–
58]. These higher order terms can also stabilize multi-Q
magnetic orderings that include SkX phases [21,54–58]. A
variational treatment like the one that has been presented in
this Letter can be applied to the full KLM to determine if
the effective higher order spin interactions can further
stabilize the field-induced SkX phase.
Our results are potentially relevant for explaining the

giant topological Hall response of Gd2PdSi3 [10,11], which
is produced by a field induced SkX phase, as it has been
recently revealed by resonant x-ray scattering [12,59].
Indeed, angle-resolved photoemission spectroscopy sug-
gests that RKKY is the dominant interaction in this material
[60]. More generally, SkX phases induced by RKKY
interactions are expected to be realized in a wider range
of hexagonal intermetallic compounds with in-plane spiral
ordering (ordering wave vector parallel to the plane) and
moderate easy-axis anisotropy.
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