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We propose to employ an optical spectroscopy technique to monitor the superconductivity and
properties of superconductors in the fluctuating regime. This technique is operational close to the plasmon
resonance frequency of the material, and it intimately connects with the superconducting fluctuations
slightly above the critical temperature Tc. We find the Aslamazov-Larkin corrections to ac linear and dc
nonlinear electric currents in a generic two-dimensional superconductor exposed to an external longitudinal
electromagnetic field. First, we study the plasmon resonance of normal electrons near Tc, taking into
account their interaction with superconducting fluctuations, and show that fluctuating Cooper pairs reveal a
redshift of the plasmon dispersion and an additional mechanism of plasmon scattering, which surpasses
both the electron-impurity and the Landau dampings. Second, we demonstrate the emergence of a drag
effect of superconducting fluctuations by the external field resulting in considerable, experimentally
measurable corrections to the electric current in the vicinity of the plasmon resonance.
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Introduction.—The study of fluctuating phenomena in
superconductors is a wide field of modern research [1–3].
At the temperature approaching Tc from above, there start
to emerge (and collapse) Cooper pairs even before the
system reaches Tc. It results in fluctuations of the Cooper
pairs density, which might sufficiently modify the conduc-
tivity of the system. This effect is especially pronounced in
samples of reduced dimensionality, as Aslamazov and
Larkin (AL) reported in their pioneering work [4]. Later
their theory was developed further to study high-frequency
phenomena in superconductors in the fluctuating regime
[5,6] and the fluctuating corrections in linear transport
phenomena in superconductors, such as the Hall effect [3],
thermoelectric phenomena [7], and the critical viscosity of
electron gas [8]. In the meantime, superconducting opto-
electronics is becoming a rapidly growing field of modern
research [9–13].
In this Letter, we demonstrate that it is possible to

monitor and manipulate transport of carriers of charge in
superconductors using external electromagnetic (EM)
waves with plasmonic frequencies, interacting with the
superconducting fluctuations (SFs) due to their coupling
with normal electrons. We develop a theory of linear ac and
second-order dc response of a two-dimensional (2D)
electron gas (2DEG) in the vicinity of the plasmon
resonance and Tc, where the SFs play an essential role.
As a first step, we study the plasmon oscillations of normal
electrons in the presence of the gas of fluctuating Copper
pairs. Second, we find the fluctuating corrections to the
drag effect, which consists of the emergence of a stationary

electric current as the second-order response to an external
alternating EM perturbation of the system [14]. It should be
noted that while exciting plasmons the internal induced
long-range Coulomb fields activate. They act on both the
electrons and the fluctuating Cooper pairs. In other words,
the interaction between electrons and SFs cannot be
disregarded, as it is usually done when considering static
and dynamic corrections to the Drude conductivity due to
the presence of an external uniform EM field in super-
conductors above Tc. Such an interaction strongly modifies
the plasmon modes of normal electrons and opens a new
microscopic mechanism of their damping and a spectros-
copy tool to study SFs.
The general approach to the description of fluctuations in

superconductors above Tc relies on rather cumbersome
methods of quantum field theory, or phenomenological
Ginsburg-Landau theory [3]. However, as it was first
pointed out by AL, it is often sufficient to use a consid-
erably simpler approach based on the Boltzmann kinetic
equations, which disregards the wave nature of fluctuating
Cooper pairs and operates with the quasiparticle picture
[15]. We will use the Boltzmann equations to calculate
the AL corrections in the response of a 2DEG to an ex-
ternal longitudinal EM field Eðr; tÞ ¼ (Eðr; tÞ; 0), with
Eðr; tÞ ¼ E0 cos ðikx − iωtÞ, which directs along the plane
of the quantum well (xy plane), containing the electron gas.
Such a setup arises (i) when studying acoustoelectric effects
in 2D systems [21–25], (ii) in photoinduced transport in 2D
systems (e.g., the photon drag effect) [26,27], (iii) when
plasma waves are excited [28], and also (iv) in ratchet
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effects in 2D systems [29–33]. In particular, it has recently
been shown, that a photoinduced ratchet current can be
sufficiently enhanced in the vicinity of the plasmon
resonance [34]. This finding and the details of the approach
used in Ref. [34] let us hypothesize that there might be
many phenomena, which become enhanced near the
plasmon resonance.
Plasmon resonance of 2DEG in the presence of SFs.—

Following the standard approach [35–37], we consider the
wave vector k and frequency ω-dependent dielectric
function of the 2DEG εðk;ωÞ, taking into account the
SFs [38]. In the absence of external perturbations, the
Cooper pairs obey the classical Rayleigh-Jeans distribution
f0ðpÞ ¼ T=εp, where p is a center-of-mass momentum of
the Cooper pair, the temperature T is taken in energy units,
and εp ¼ αTcðϵþ ξ2p2=ℏ2Þ ¼ p2=4mþ αTcϵ is the
energy with ℏ Planck’s constant and ϵ ¼ ðT − TcÞ=Tc >
0 the reduced temperature [3]; α is fixed by the relation
4mαTcξ

2=ℏ2 ¼ 1, where m is an electron effective mass;
the coherence length ξ in 2D samples has different
definitions for the cases of clean Tτ=ℏ ≫ 1 and disordered
Tτ=ℏ ≪ 1 regimes, where τ is the electron relaxation time
(which we assume constant for simplicity). Both the
regimes are sewn in the general expression

ξ2 ¼ v2Fτ
2

2

�
ψ

�
1

2

�
− ψ

�
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Þ

4πTτ

�
; ð1Þ

where ψðxÞ is the digamma function and vF ¼ ℏ
ffiffiffiffiffiffiffiffi
4πn

p
=m

is the Fermi velocity.
The internal induced electric field Eiðk;ωÞ due to the

fluctuations of the charge densities can be found from the
Poisson equation in the quasistatic limit, when we can
neglect the retardation effects. Assuming that the z axis is
directed across the 2D system, which is located on a
substrate (z < 0) with a dielectric constant κ (Fig. 1), and
using the ansatz expðikx − iωtÞ for all the time and position-
dependent quantities, we find the Poisson equation for the
scalar potential φðzÞ of the induced field in the form [39]� ∂

∂z κðzÞ
∂
∂z − k2

�
φðzÞ ¼ −4πðρkω þ ϱkωÞδðzÞ; ð2Þ

where κðzÞ ¼ 1 for z > 0 and κðzÞ ¼ κ for z < 0; ρkω and
ϱkω are Fourier transforms of charge densities due to the
normal electrons and fluctuating Cooper pairs, respectively.
Solving Eq. (2), we find

φðzÞ ¼ 4π

ðκ þ 1Þk e
−kjzjðρkω þ ϱkωÞ: ð3Þ

Furthermore, using the continuity equation for both the
components of the charge density and expressing the
currents via conductivities, we come to the system of
equations

ρkω ¼ −i
k2σDkω
ω

φð0Þ;

ϱkω ¼ −i
k2σALkω
ω

φð0Þ; ð4Þ

where σDkω and σALkω are Drude and Aslamazov-Larkin
conductivities. The determinant of the system (4),

εðk;ωÞ ¼ 1þ i
4πk

ðκ þ 1Þω ðσDkω þ σALkω Þ; ð5Þ

allows us to find the dispersion relation of collective modes
and their damping by putting εðk;ωÞ ¼ 0. The plasmon
pole lies in the frequency range ω ≫ kvF. Since vF ≫ u,
where u ¼ p=2m is the Cooper pair velocity, we can
disregard the spatial dispersions of both the conductivities,
yielding

σDω ¼ e2
Z

dp
ð2πℏÞ2

v2xτ
1 − iωτ

�
−
∂F 0

∂ε̃p
�
; ð6Þ

σALω ¼ ð2eÞ2
Z

dp
ð2πℏÞ2

u2xτp
1 − iωτp

�
−
∂f0
∂εp

�
; ð7Þ

where vx, ε̃p ¼ p2=2m, andF 0 are the velocity, energy, and
equilibrium Fermi distribution function of normal electrons
and τp ¼ ℏπα=ð16εpÞ is the Cooper pair lifetime.
Using Eq. (6), we rewrite Eq. (5) in the form

�
ω

ωp

�
2

þ i

�
1

ωpτ
þ ωpτ

σALω
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��
ω

ωp

�
−
σALω
σD0

− 1 ¼ 0; ð8Þ

where ω2
p ¼ 4πe2nk=mðκ þ 1Þ is a bare plasmon fre-

quency for 2D electron gas and σD0 ¼ e2nτ=m is a static
Drude conductivity. Furthermore, introducing a dimension-
less variable x ¼ εp=ðαTcϵÞ in Eq. (7), we rewrite

σALω ¼ σAL0

Z
∞

1

dx
x2

2ðx − 1Þ
x − iβω

; ð9Þ
FIG. 1. System schematic. A two-dimensional material on a
substrate at the temperature close to Tc. The system is exposed to
a longitudinal EM field E.
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where σAL0 ¼ e2=ð16ℏϵÞ is a static AL conductivity and
βω ¼ πℏω=ð16TcϵÞ contains all the frequency dependence.
A typical range of plasmon frequencies is ωp ∼ 1010 ÷
1011 s−1 [40] and for Tc ¼ 10 K and ϵ ¼ 0.1 we find
βωp

∼ 0.01 ÷ 0.2. It means that the electromagnetic field
induced by the plasmon oscillations of normal electrons is
quasistatic for the fluctuating Cooper pairs, and we can
safely disregard the frequency dependence of AL conduc-
tivity in the vicinity of the plasmon resonance. Then Eq. (8)
has an exact solution [41],

ω ¼ ωp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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pτ
σAL0
σD0

�
: ð10Þ

Assuming σAL0 ≪ σD0 and ωpτ ≫ 1, we find [43]

ω ¼ ωp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2

σAL0
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�
2

s
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ω2
pτ

2

σAL0
σD0

: ð11Þ

Relation (11) represents the first central result of this Letter.
We immediately see, that even if we take a small factor
σAL0 =σD0 ≪ 1, it can be compensated by the large (plas-
monic) factorωpτ ≫ 1, making their product arbitrary [44].
It means that the interaction of normal electrons with
fluctuating Cooper pairs leads to a significant renormaliza-
tion of both the plasmon dispersion (redshift) and its
damping.
The plasmon branch exists when the expression under

the square root in Eq. (11) is positive,

η ¼ ωpτ

2

σAL0
σD0

< 1: ð12Þ

Moreover, the absolute value of the damping Γs ¼ jImωj
should be smaller than Reω. In other words, η=

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
<

1 or η <
ffiffiffi
2

p
=2; then plasmons represent “good” quasipar-

ticles [47]. For example, if η ¼ 0.6, the relative shift of the
plasmon frequency δωp=ωp ¼ 20%, which is fully detect-
able experimentally.
Let us compare different plasmon damping mechanisms.

One of them is due to the scattering of normal electrons
with impurities, Γi ¼ 1=2τ [41]. The ratio of the imaginary
part of Eq. (11) and Γi is Γs=Γi ¼ ðωpτÞη. Despite η < 1,
the fluctuations-induced plasmon damping can exceed the
impurity-induced one (since ωpτ ≫ 1) [48].
The drag electric currents.—The drag current of normal

electrons as a nonlinear response of the system to the
external EM perturbation in the case of longitudinal EM
waves reads [54] (see Supplemental Material [51] for the
details of derivations)

jðeÞ ¼ k
2eωn

���� σDωE0

εðk;ωÞ
����2; where σDω ¼ σD0

1 − iωτ
: ð13Þ

The presence of the function εðk;ωÞ in the denominator
here reflects the screening of the external field by the
carriers of charge. It should be noted, that in the presence of
the SFs in the system, the drag current of normal electrons
is affected by them at plasmon frequencies via their
contribution to the dielectric function εðk;ωÞ, as becomes
evident from Eq. (5).
To derive the drag current of fluctuating Cooper pairs, we

use the Boltzmann equation [16]

_f þ u · ∂rf þ 2e½Eðr; tÞ þ Eiðr; tÞ� · ∂pf ¼ Iffg; ð14Þ

where f is a distribution function of SFs, Ei is the induced
electric field [55], Iffg ¼ −ðf − hfiÞ=τp with hfi the
locally equilibrium distribution function. We assume that
the external EM field causes small perturbation over the
homogeneous case, and thus we can expand f and the
normal electron density N in powers of external field
[56,57]: f ¼ f0 þ f1 þ f2 þ oðf3Þ, N ¼ nþ n1 þ n2þ
oðn3Þ, and hfi¼f0þ∂nf0ðn1þn2Þþ∂2

n2f0ðn1þn2Þ2=2.
The latter expansion holds since the equilibrium distribu-
tion of fluctuating Cooper pairs depends on the density of
normal electrons, as it has been mentioned above, after
Eq. (1). Furthermore, due to the dependence of the Cooper
pairs lifetime τp on normal electron density, it also expands
as τ−1p þ ∂nτ

−1
p ½n1 þ n2 þ oðn3Þ�.

Decomposing the first-order corrections as plane waves,
f1ðr; tÞ ¼ ½f1 expðikx − iωtÞ þ f�1 expð−ikx þ iωtÞ�=2;
n1ðr; tÞ ¼ ½n1 expðikx − iωtÞ þ n�1 expð−ikx þ iωtÞ�=2,
and combining all the first-order terms in Eq. (14), we find

f1 ¼
−2eτpE0 · ∂pf0 þ n1∂nf0

1 − iðω − k · uÞτp
: ð15Þ

Obviously, f1 is determined not only by the direct action
of the external EM field (the term E0 · ∂pf0), but also
by the normal electron density fluctuations (n1-containing
term). To find n1 we use the continuity equation,
n1 ¼ σDkωk ·E0=eω.
Onwards, we consider the second-order terms in Eq. (14)

and find

eRe
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E�

0 ·
∂f1
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�
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∂n2

�

−
∂τ−1p
∂n Re
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f1 − n1

∂f0
∂n

�
n�1
2
; ð16Þ

where the bar sign stands for the time averaging. This
equation defines the stationary part of the second-order
correction f2, which determines the drag current
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jAL ¼ 2e
Z

dp
ð2πℏÞ2 uxf2: ð17Þ

Because of the integration over the angle in this expression
(while taking the 2D integral over dp), all the terms in
Eq. (16) containing the derivative(s) of f0 over n do not
contribute to the current (17). The remaining terms give the
final expression for the second-order correction to the
distribution function,

f2 ¼ −eτpRe
�
E�

0 ·
∂f1
∂p

�
−
τp
2

∂τ−1p
∂n Reðf1n�1Þ: ð18Þ

Using Eqs. (15) and (16) and restoring εðk;ωÞ we find [51]

jAL ¼ k
2eωn

σAL0
σD0

���� σDωE0

εðk;ωÞ
����2GðβωÞ; ð19Þ

where βω ¼ πℏω=16Tcϵ and

GðβωÞ ¼
1

β3ω
f2βω½βωωτ − ðβω þ 2ωτÞ arctanðβωÞ�

þ ð2βω − β2ωωτ þ 2ωτÞ lnð1þ β2ωÞg: ð20Þ

Formulas Eqs. (19)–(20) represent the second central result
of this Letter.
Results and discussion.—We can compare the magnitude

of the SFs drag current (19) with Eq. (13) describing the
drag current of normal electrons,

jAL

jðeÞ
¼ σAL0

σD0
GðβωÞ: ð21Þ

Figure 2 shows the spectrum of this ratio. With the decrease
of ϵ and n, the AL correction growth and becomes
significant. In the vicinity of the plasmon resonance ω ¼
ωp and at ωpτ ≫ 1, the ratio in Eq. (21) depends on the
value of βωp

. In the experimentally achievable limit βωp
≪

1 [43], we can expand GðβωÞ over small β and find

jAL

jðeÞ
¼ −

2

3

σAL0
σD0

ωpτβω: ð22Þ

At the plasmon frequency ω ¼ ωp,

jAL

jðeÞ
¼ −

π2

96

e2k
ðκ þ 1ÞTcϵ

2
: ð23Þ

We see that the dependence of the AL drag current on
temperature has a strong singularity ϵ−2 at T → Tc.
In Eq. (22), the smallness of βω can be compensated by

the large parameter ωpτ ≫ 1 in the vicinity of plasmon
resonance, resulting in an experimentally measurable
value of SFs drag current. Indeed, at n ∼ 1011 cm−2,

k ∼ 102 cm−1 [40], ωp ∼ 5 × 1010 s−1. At the same time,
the electron density n ∼ 1014 cm−2 has been recently
created in MoS2 material to study the superconducting
fluctuations [58]. Since ωp ∝

ffiffiffi
n

p
, we estimate ωp ∼

1011 s−1. Thus, at ϵ ¼ 0.1, we find βωp
∼ ð0.01 ÷ 0.2Þ.

Taking ωpτ ∼ 10, we estimate the drag current jAL=jðeÞ ∼
ð0.1 ÷ 1ÞσAL0 =σD0 .
The AL correction gives an increase of conductivity

when the system approaches Tc. In contrast, the AL
correction to the drag effect has negative sign (see
Fig. 2), as it follows from Eq. (22). If the drag current
of normal electrons is given by Eq. (13), SFs give a
decrease of the total drag current of the system in the
vicinity of Tc. However, if we account for the dependence
of the electron relaxation time on its energy, the drag
current (13) might also have negative sign or even change it
with frequency [14]. In this case, the SFs can increase the
overall magnitude of the total drag current.
An important and essential feature of Eq. (22) is that the

effect is stronger at bigger ωpτ. It makes us envisage that
from the experimental point of view, the photon and
acoustic drag effects seem not the best candidates to
observe the plasmon amplification of SFs drag current.
Indeed, the acoustic frequencies are much smaller than ωp,
whereas in the photon drag effect the in-plane projection of
the photon wave vector is too small to excite plasmons.
Thus, probably, the most prominent configuration can be
the ratchet [29,30], when an asymmetric grating structure
is deposited above the 2DEG. Lately, it has been reported
that the ratchet current of normal electrons is enhanced at
plasmon frequencies [34]. Therefore, our calculations
suggest the plasmon enhancement of SFs in such structures.

FIG. 2. The ratio of the AL and Drude electric currents (21) as a
function of frequency of the external EM field for different
temperatures: ϵ ¼ ðT − TcÞ=Tc ¼ 0.1 (red), 0.05 (blue), and 0.03
(black). We used m ¼ 0.5m0, where m0 is the free electron mass,
κ ¼ 12, τ ¼ 10−9 s, and n ¼ 1011 cm−2. The inset shows the
current ratio (21) as a function of frequency for different electron
densities: 1011 (red), 5 × 1011 (green), and 1012 cm−2 (blue) for
T ¼ 10.3 K.
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In recent years, there has emerged a growing interest in
terahertz (THz) equilibrium and nonequilibrium studies of
different low-dimensional materials in the SC regime T <
Tc [59]. It turns out that the THz spectroscopy methods can
be utilized to manipulate the SC gap efficiently since they
are susceptible. In this Letter, we have shown that external
EM fields of the THz frequency (which we used in our
calculations) can also be used to monitor superconductors
in the fluctuating regime.
Conclusions.—We have considered a two-dimensional

material in the vicinity of the transition temperature to a
superconducting state, where the superconducting fluctua-
tions can be described by the Aslamazov-Larkin approach
[60]. Using the Boltzmann transport equations, we have
studied the dynamics of fluctuations, taking into account
the interaction between the Cooper pairs and the normal
electron gas within the mean-field random phase approxi-
mation approach, and analyzed the plasmon resonance
phenomenon, showing that it experiences an anomalously
large broadening and renormalization of plasmon dispersion
caused by the presence of fluctuations in the system [61].
This broadening has strong sensitivity to temperature, and it
substantially increases when the temperature approaches Tc.
Furthermore, we have studied the drag effect of fluctuating
Cooper pairs and shown that the drag electric current
magnitude is measurable in an experiment. Our findings
open a way for the plasmon spectroscopy (awell-established
experimental technique) to serve as an effective tool to test
fluctuating phenomena and thus optically explore the proper-
ties of superconductors.
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