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Almost strong edge-mode operators arising at the boundaries of certain interacting one-dimensional
symmetry protected topological phases with Z2 symmetry have infinite temperature lifetimes that are
nonperturbatively long in the integrability breaking terms, making them promising as bits for quantum
information processing.We extract the lifetime of these edge-mode operators for small system sizes aswell as
in the thermodynamic limit. For the latter, a Lanczos scheme is employed to map the operator dynamics to a
one-dimensional tight-binding model of a single particle in Krylov space. We find this model to be that of a
spatially inhomogeneous Su-Schrieffer-Heeger model with a hopping amplitude that increases away from
the boundary, and a dimerization that decreases away from the boundary. We associate this dimerized or
staggered structurewith the existence of the almost strongmode. Thus, the short time dynamics of the almost
strong mode is that of the edge mode of the Su-Schrieffer-Heeger model, while the long time dynamics
involves decay due to tunneling out of that mode, followed by chaotic operator spreading.We also show that
competing scattering processes can lead to interference effects that can significantly enhance the lifetime.
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Topological states of matter are characterized by a bulk-
boundary correspondence where nontrivial topological
phases host robust edge modes [1–3]. While topological
phases have been fully classified for free fermions [4], the
stability of these phases to perturbations such as nonzero
temperature, disorder, and interactions is poorly under-
stood. The expectation is that, as long as the perturbations
are smaller than the bulk single-particle energy gap, the
edge modes will survive. More surprisingly, examples are
beginning to emerge where, even at high temperatures of
the order of the bandwidth and with moderate interactions,
the edge modes, while not completely stable, have
extremely long lifetimes [5–8]. Since edge modes can be
used as qubits, understanding these nonperturbatively long
lifetimes is of fundamental importance both for theory and
for applications.
We study a class of one-dimensional models that in the

limit of free fermions correspond to class D in the Altland-
Zirnbauer classification scheme [4,9]. These models host
Majorana modes and are promising candidates for non-
Abelian quantum computing [10–16]. Adding interactions
and raising the temperature do not appear to destabilize the
edge modes easily [5–7,17,18]. Similar behavior has been
found in interacting, disorder-free, Floquet systems where
bulk quantities heat to infinite temperature rapidly, i.e.,
within a few drive cycles, and yet edge modes coexist with
the high temperature bulk for an unusually long time [19].
A hurdle to understanding these lifetimes is that they are

extracted from exact diagonalization (ED), and this is
plagued by system size effects, making it difficult to extract
lifetimes in the thermodynamic limit.
We present a fundamentally new scheme to extract the

long lifetimes of topological edge modes. Using a Lanczos
scheme, we map the Heisenberg time evolution of the edge-
mode operator onto a Krylov basis where the dynamics is
equivalent to a single particle on a tight-binding lattice with
inhomogeneous couplings [20–22]. We find that this lattice
for the edge-mode operators is neither that of an operator of
a free or integrable model nor is it the lattice typical of a
chaotic operator. We give arguments for the general
structure of the Krylov lattice of these topological edge
modes and analytically extract the lifetime.
Model.—We study the anisotropic XY model of chain

length L, perturbed by a transverse field, and by exchange
interactions in the z direction,

H ¼
XL

i¼1

�
J

�
1þ γ

2

�
σxi σ

x
iþ1 þ J

�
1 − γ

2

�
σyi σ

y
iþ1

þ Jzσ
z
iσ

z
iþ1 þ gσzi

�

¼ HXX þHYY þHZZ þHZ; ð1Þ

where g and γ denote the strength of the transverse field
and the XY anisotropy respectively. We set J ¼ ℏ ¼ 1.
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A nonzero Jz prevents a mapping to free Jordan-Wigner
fermions. The model has a Z2 symmetry Dz ¼ σz1σ

z
2…σzL.

For γ ≠ 0, Jz ¼ 0, jgj < 1 or γ ≠ 0, Jz ≠ 0, g ¼ 0 the
model supports a strong mode (SM) operator defined as
[10,23–26]

fΨ0; Dzg ¼ 0; ½H;Ψ0� ≈ uL; kuk < 1: ð2Þ

Thus, as L → ∞, ½H;Ψ0� ¼ 0. The existence of an SM
implies that the two different parity sectors are degenerate
as L → ∞ [27,28].
When Jz ≠ 0, the SM turns into an almost strong mode

(ASM) [5] that anticommutes with parity but only approx-
imately commutes with H when L → ∞. For small system
sizes, the ASM behaves like the SM as its lifetime increases
exponentially with L. For larger L however, its lifetime
saturates to a system size independent value.
SM for Jz ¼ 0.—While the SM is Ψ0 ¼ σx1 when

Jz ¼ g ¼ 0, γ ¼ 1, for other parameters, it is a more
complicated operator that nevertheless has a finite overlap
with σx1. In terms of Majorana fermions, defined as

a2l−1 ¼ σxl
Yl−1

j¼1

σzj; a2l ¼ σyl
Yl−1

j¼1

σzj; ð3Þ

and for γ > 0, we find that the SM localized at one end
is [29]

Ψ0 ¼
XL−1

l¼1

Cla2l−1; Cl ¼
ð1þ γÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ γ2 − 1

p ðqlþ − ql−Þ;

q� ¼ g�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ γ2 − 1

p

1þ γ
: ð4Þ

Ψ0 is normalizable for g2 < 1, γ ≠ 0, indicating that it is
localized at the boundary. When γ ¼ 1, the SM is the
familiar one for the Kitaev chain with [10] Cl ¼ gl−1. Note
that, just like the correlations [30], the spatial character of
the SM changes at g2 þ γ2 ¼ 1.
Autocorrelation function.—Because of the overlap with

σx1 when γ > 0, the SM and ASM (together denoted by (A)
SM) might be detected through the infinite temperature
autocorrelation function [5] defined as

A∞ðtÞ ¼
1

2L
tr½σx1ðtÞσx1ð0Þ�: ð5Þ

Here ÔðtÞ ¼ eiHtÔe−iHt denotes Heisenberg time evolu-
tion. In general, A∞ðtÞ ∼ e−Γt decays in time. For a finite
wire, the (A)SM can tunnel across, and the decay rate is
exponentially dependent on L, as suggested in Eq. (2), with
Γ ∼ e−Lhðγ;g;JzÞ for some function h to be determined. The
exponential increase in lifetime with system size is a
characteristic of the SM. In contrast, for the ASM, the

exponential increase of lifetime with system size eventually
saturates to an L independent result. For example, when
γ ¼ 1, ED suggests a highly nonperturbative dependence
Γ ∼ e−cJ=Jz , c ¼ Oð1Þ up to logarithmic corrections [6].
This form is also argued from setting operator bounds on
approximately conserved quantities in the prethermal
regime [31]. However, a treatment that directly studies
the lifetime of topological edge modes and is valid for
broader regimes that are not necessarily related to pre-
thermalization is needed.
Lifetime for small system sizes.—We now show that the

lifetime for small system sizes is largely governed by
perturbative processes. Denoting jϵni as an eigenstate of H
and parity, even in the presence of integrability breaking
terms, σx1jϵni ∼ jϵ0ni, where ϵ0n is the opposite parity energy
level nearly degenerate to ϵn. Defining Δn ¼ ϵn − ϵ0n, we
find that, to a good approximation, the finite-size behavior
is mimicked by [29] A∞ðtÞ ∼

P
n cosðΔntÞ=2L−1. For

the finite-size decay rate, a perturbative estimate of Δn
suffices. Below we treat Jy;z, g ≪ 1, where Jy ¼ ð1 − γÞ=2.
Focusing on the two degenerate ground states of HXX (not
necessarily of definite parity), we determine the process
that gaps the states and from that construct the two gapped
states of definite parity. The same considerations hold for
every excited level of HXX.
Denoting the eigenstate of σx as σxj�i ¼ �j�i, let us

first consider the case when g is dominant. L applications of
g are required for a transition from one ground state to

another, jþþ � � � þi →
ðg
P

i
σzi ÞLj−− � � �−i. Thus, the splitting

between the ground state sectors is gL, and the same
splitting appears when rotated to the basis of definite
parity, jþþ � � � þi � j−− � � �−i. The energy splitting gives
a decay rate of the ASM, Γ ∼ gL ¼ elogðgÞL.
When Jz is the dominant term, the ground state

degeneracy is lifted by L=2 applications of Jz,

jþþ � � � þi →
ðJz

P
i
σzi σ

z
iþ1

ÞL=2
j−− � � �−i, giving an energy split-

ting and consequently a decay rate Γ∼ðJzÞL=2¼elogðJzÞL=2.
Similar arguments can be applied when Jy is dominant.
Since, σyi σ

y
iþ1 ¼ −σxi σxiþ1σ

z
iσ

z
iþ1, up to an overall sign, Jy is

similar to the Jz perturbation and gives Γ ∼ ðJyÞL=2 ¼
elogðJyÞL=2. Figure 1 plots Γ obtained from ED. The solid
lines are the estimates for Γ from perturbation theory, and
they excellently describe the asymptotic behavior of the
data. In addition, the plot shows an interesting phenomenon
when competing terms affect the lifetime. In particular,
when Jy ∼ Jz, since matrix elements of the two terms have
opposite signs, destructive interference between these two
scattering channels leads to an enhanced lifetime. This is
visible as a pronounced cusp in Fig. 1 when Jy ∼ Jz.
Krylov basis.—We now discuss the lifetime of the ASM

in the system size independent limit. We study the operator
dynamics following a Lanczos scheme designed to map the
Heisenberg time evolution to a tight-binding model in
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Krylov space [20,21]. Note that σx1ðtÞ ¼ eiHtσx1e
−iHt ¼P∞

n¼0½ðitÞn=n!�Lnσx1, where L ¼ ½H; ·�. We define
Ô ¼ jOÞ, and ðO1jO2Þ ¼ ð1=2LÞtr½O†

1O2�. Thus, A∞ðtÞ
becomes

A∞ðtÞ ¼ ðσx1jeitLjσx1Þ: ð6Þ
The Pauli basis is 22L dimensional; hence determining L
outright is generally not feasible. σx1 is aMajorana, andwhen
the system is free, the time evolution can only mix with a
total of 2L Majoranas, and only in this case can L be
completely determined.However, the key observation is that
for both free and interacting cases, there is a special basis, the
Krylov basis, whereL is tridiagonal and the dynamics of any
operator can be mapped to a tight-binding model.
To construct the Krylov basis for, say, σx1, we start with

jO0Þ ¼ jσx1Þ and construct jA1Þ ¼ LjO0Þ, b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðA1jA1Þ

p
,

and jO1Þ ¼ jA1Þ=b1. These steps are repeated as follows:

jAnÞ ¼ LjOn−1Þ − bn−1jOn−2Þ;

bn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAnjAnÞ

p
; jOnÞ ¼

1

bn
jAnÞ: ð7Þ

In the Krylov basis, the Liouvillian takes the form

L ¼ HK ¼
X

i

biðc†i ciþ1 þ H:c:Þ; ð8Þ

where c†i , ci are the creation, annihilation operators in the
Krylov basis. Recently, this approach has been mainly used
to identify chaos [21,22,32]. Below we show that this
method is very helpful for studying long-lived topological
edge modes.
Lifetime in the thermodynamic limit.—The (A)SM can

be constructed by noticing that

½HK; c
†
1� ¼ b1c

†
2;

�
HK; c

†
1 −

b1
b2

c†3

�
¼ −

b1b3
b2

c†4;

�
HK; c

†
1 −

b1
b2

c†3 þ
b1b3
b2b4

c†5

�
¼ b1b3b5

b2b4
c†6…: ð9Þ

Thus, the ASM after N iterations is

Ψ0ðNÞ ¼
XN

n¼0

ð−1Þn b1b3…b2n−1
b2b4…b2n

c†2nþ1: ð10Þ

The error, defined by how much Ψ0ðNÞ does not commute
with HK , is

errorðNÞ ¼ ½H;Ψ0ðNÞ�

¼ ð−1ÞN b1…b2N−1b2Nþ1

b2…b2N
c†2Nþ2: ð11Þ

The error is an important quantity for identifying an
(A)SM. This is because for an SM, the error only decreases
with subsequent iterations, whereas for an ASM, the error
decreases up to a certain N� and then begins to grow.
In addition, as we show below, the error at N� can be used
to determine the lifetime in the thermodynamic limit.
First consider Jz ¼ 0, g2 < 1, for which an SM

exists [cf. Eq. (4)]. We find that the Krylov Hamiltonian
for σx1 with γ ¼ 1 is bodd ¼ 2g, beven ¼ 2 and therefore
has a staggered or dimerized structure quantified by
b2n − b2nþ1 > 0. For γ ≠ 1, the bn are shown in Fig. 2
and show a similar staggered structure. Thus, the effective
Hamiltonian in the Krylov basis is the Su-Schrieffer-
Heeger (SSH) model [33,34], with the SM being the edge
mode of the SSH model. For the same parameters, other
Pauli operators such as σy;z1 that are not localized at the edge
under Heisenberg time evolution have a qualitatively
different Krylov Hamiltonian. In particular, σy1 is given
by an SSH-type model but with a dimerization of the
opposite sign to that of σx1, so that the effective Hamiltonian
for σy1 is topologically trivial and supports no localized edge
mode. Since topological protection is robust to moderate
disorder, local fluctuations of the above staggered structure
in Krylov space will not affect the stability of the edge
mode. The pattern of staggering of bn in Fig. 2 continues
until n ∼OðLÞ, after which finite-size effects such as the
hybridization of the Majoranas at the ends of the chain
set in.
The Krylov basis for σz1 is different from σx;y1 in that, to

start with, near site 1 the dimerization is negative, corre-
sponding to a topologically trivial phase. But on moving
toward the bulk, the average hopping first increases and
then plateaus. The net effect on the dynamics is similar to
that on σy1 in that this lattice causes the operator to spread
rapidly into the bulk under time evolution. The lower panel
of Fig. 2 shows the A∞ of the three Pauli operators, with
σy;z1 decaying rapidly.
In Fig. 3, the top panel shows how the bn change on

increasing Jz. The corresponding A∞ is plotted in the lower
panel of Fig. 3. One finds that the effect of Jz is twofold.
One is to increase the average hopping into the bulk, which
appears as a nonzero slope of bn when plotted against n.

FIG. 1. Decay rate of A∞ obtained from ED for different L and
Jz behaves as Γ ¼ ½maxðJz; JyÞ�L=2, where g ≪ Jz;y ≪ 1. When
Jz ¼ Jy, destructive interference between two scattering channels
leads to a pronounced increase of the lifetime, as indicated
by the cusp.
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The second effect is to reduce the dimerization with
increasing n. Eventually, deep in the bulk, the dimerization
vanishes, and the effective hopping increases linearly with
position, a behavior expected for a generic chaotic operator
[21,22]. The long lifetime of the ASM is entirely due to this
crossover from the topologically nontrivial SSH model at
small n to chaotic linear couplings at large n.
Effective model in Krylov basis.—We make this more

quantitative by adopting the following model for the
hopping parameters:

b2n ¼ α0 þ ρα2nþ δ; 0 < α ≪ α0 ∼ δ;

b2nþ1 ¼ α0 þ αð2nþ 1Þ; 0 < 1 − ρ ≪ 1: ð12Þ

The even sites have slope ρα, while the odd sites have slope
α. At some point the dimerization b2n − b2nþ1 changes sign
as ρ < 1. This means that Eq. (11) eventually grows with N
and the mode is non-normalizable. We also imposed 1 −
ρ ≪ 1 to simplify analytic expressions, but this restriction
is not essential.
We can estimate the decay rate from Eq. (11) by

finding N� such that b2N�þ1 ¼ b2N� , which gives N� ∼
δ=2αð1 − ρÞ ≫ 1 and

Γ ∼ jerrorðN�Þj ¼ b1 exp

�XN�

n¼1

ln

�
b2nþ1

b2n

��

∼ exp

�
−

δ

2α
log

�
1

1 − ρ

��
: ð13Þ

Note that when ρ ¼ 1, α ≠ 0, we still have an SM despite
the fact that the bn have a linear slope bn ∼ αn. Thus, it is
the dimerization, which is preserved when ρ ¼ 1, that
prevents the operator from spreading. Equation (13) shows
that the lifetime depends on Jz nonperturbatively as the
slope α ∝ Jz. We later give numerical and qualitative
arguments for this form of the slope.

It is illuminating to consider the continuum limit of the
effective Hamiltonian in the Krylov basis, where the
eigenvalue problem may be recast as [29] EΨn ¼
½ðb2n−1 − b2n − b2n∂nÞσ− þ H:c:�Ψn. The edge mode sol-
ution is

Ψ0;n ¼ e−
R

n

1
dmðb2m−b2m−1Þ=b2m

�
1

0

�
; ð14Þ

and shows that the ASM, indeed, decreases in amplitude into
the bulk when ðb2m − b2m−1Þ=b2m > 0. Using the minimal
model in Eq. (12), we see that, at N�, b2N� − b2N�þ1 ¼ 0,
Eq. (14) stops decreasingwithn andmixeswith othermodes.
The decay rate is estimated by the value of ASM at
n ¼ N�, Γ ∼ exp ½− R

N�
dmðb2m − b2m−1Þ=b2m�, which

recovers Eq. (13).
Comparison of ED with Krylov Hamiltonian with a

metallic bulk.—We extract the nonerturbative lifetime
using two different numerical methods. The top panel
of Fig. 4 compares A∞ from ED for L ¼ 14 to that
obtained from time evolving by the Krylov Hamiltonian
hn ¼ 1j½exp ðiHKtÞ�jn ¼ 1i, where jn ¼ 1i is a state local-
ized at site 1 in the Krylov basis. Since the calculation of
the bn is exponentially expensive in computer resources,
only the first ∼40 bn are evaluated. Guided by Fig. 3, we
simulate a semi-infinite lattice in Krylov space by setting
b40<n<2e5 ¼ b40, essentially attaching a metallic reservoir
to our inhomogeneous SSH model. The lifetime obtained
by both these methods is shown in the lower panel of Fig. 4
and suggests the L independent form lnΓ ∝ −1=Jz. Thus,
for the purpose of capturing the lifetime, the simple model
for the bulk bn is an efficient alternative to ED. In addition,
the saturation of the lifetime implies that it is controlled by
the dimerization of the bn at small and intermediate n [29].
Qualitative argument for α ∝ Jz.—We supplement the

above results for the decay rate by a qualitative argument
for α ∝ Jz. For simplicity we restore J and consider γ ¼ 1.
When Jz ¼ g ¼ 0, then H ¼ HXX ¼ JN counts the num-
ber of domain walls N ¼ P

i σ
x
i σ

x
iþ1. When Jz ≠ 0 we

FIG. 2. Top panel: The bn for the Pauli spins on the first site
σx;y;z1 for Jz ¼ 0, γ > 0. The model maps to free fermions and
supports an SM with overlap with σx1. The deviation from perfect
staggered behavior for n > 10 is a finite-size effect. Bottom
panel: A∞ from ED for σx;y;z1 . Because of overlap with the SM, σx1
persists up to t ∼ 104 as opposed to σy;z1 that decay by t ¼ Oð1Þ.

FIG. 3. Top panel: The bn for increasing Jz with finite-size
effects appearing as a plateau for n > 20. As L is increased [29],
the linear ramp is extended, with the bn plateauing at a larger n
and at a larger value. Bottom panel: A∞ shows rapid decrease in
lifetime with increasing Jz.
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recast HZZ ¼ JzDþ JzẼ, where D commutes with N,
whereas Ẽ does not. We find that the operator

D ¼
X

j

Pjσ
z
jσ

z
jþ1; Pj ¼

1

2
½1 − σxj−1σ

x
jσ

x
jþ1σ

x
jþ2�; ð15Þ

does not change the number of domain walls and commutes
with N [29]. D is essentially a hopping term for domain
walls. In the basis that simultaneously diagonalizes D, N,
we find that the minimal energy to create a domain wall in
the bulk is reduced from 2J to 2J − Jz and that domain wall
particle-hole pairs have energies of OðJz). Now consider
Jz ≪ g. Then the leading term noncommuting with N
is HZ.
As argued for a different model [7], the energy cost for

flipping a spin at the edge is ∼J. Thus, a creation of ∼J=Jz
pairs of domain walls in the bulk can offset the energy J
required to flip an edge spin. This requires J=Jz applica-
tions of the transverse field g. Therefore the Fermi golden
rule estimate for the decay rate is

Γ ∼ g

�
g
J

�
cJ=Jz

; c ¼ Oð1Þ: ð16Þ

Up to logarithms, this decay rate is consistent with
ED [6] (Fig. 4), operator bounds in the prethermal
regime [31], and time evolution using a truncated Krylov
Hamiltonian (Fig. 4).

Summary.—We have presented a new way to extract the
nonperturbatively long lifetimes of ASMs. We showed
that the Krylov Hamiltonian for the ASM has linearly
growing hopping along with decreasing dimerization,
where the dimerization is associated with the existence
of the ASM and is key to preventing chaotic operator
growth. Essentially the operator dynamics is that of a
particle that is trapped for a long time as a quasistable SSH
edge mode that eventually escapes via tunneling. We
demonstrated that a truncated Krylov Hamiltonian termi-
nating in a metallic bulk is an efficient way for capturing
the lifetime of the ASM. We also found that competing
terms can interfere to enhance the lifetime (Fig. 1). It would
be interesting to identify additional structures of the Krylov
Hamiltonian, besides dimerization, that can support long-
lived edge modes. More broadly, generalization of this study
to other topological states, both static and Floquet, and in any
spatial dimension is an exciting avenue for future research.
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