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A quadrupole topological insulator, being one higher-order topological insulator with nontrivial
quadrupole quantization, has been intensely investigated very recently. However, the tight-binding model
proposed for such emergent topological insulators demands both positive and negative hopping
coefficients, which imposes an obstacle in practical realizations. Here, we introduce a feasible approach
to design the sign of hopping in acoustics, and construct the first acoustic quadrupole topological insulator
that stringently emulates the tight-binding model. The inherent hierarchy quadrupole topology has been
experimentally confirmed by detecting the acoustic responses at the bulk, edge, and corner of the sample.
Potential applications can be anticipated for the topologically robust in-gap states, such as acoustic sensing
and energy trapping.

DOI: 10.1103/PhysRevLett.124.206601

Introduction.—The past decade has witnessed an explo-
sive development of topological states of matter in classical
wave systems [1–5]. The robustness of the topological
systems against disorders and the associated one-way edge
states provide new opportunities for manipulating classical
waves. Besides the analogs of conventional topological
insulators [6–24] and topological semimetals [25–34], the
recent interest on higher-order topological insulators
(HOTIs) [35,36] has opened a new direction of topological
phases in classical systems [37–53]. Different from
the conventional topological insulators, in which the D-
dimensional bulk is gapped and the topological invariant
counts the number of gapless modes hosted on the (D − 1)-
dimensional boundaries of the sample, the HOTIs are a new
family of topological phases of matter that goes beyond the
conventional bulk-boundary correspondence principle. For
example, unlike conventional two-dimensional (2D) topo-
logical insulators, a 2D second-order HOTI does not exhibit
gapless one-dimensional (1D) topological edge states, but
instead has topologically protected zero-dimensional (0D)
corner states. Because of the flexibility in sample design,
HOTIs have been soon implemented in mechanical [37,45],
photonic [38,40–44], electrical circuits [39,46,47] and
acoustic [48–53] systems.
A quadrupole topological insulator (QTI) [35,36], featur-

ing a nontrivial quadrupole moment, has drawn extensive
attention recently [37–39,41]. In this novel 2D topological
system, a bulk quadrupole moment in a finite-sized sample
gives rise to surface dipole moments on its 1D edges and to
uncompensated charges on the 0D corners. The former
contributes to gapped edge modes and the latter exhibits
the presence of nontrivial corner modes, which reflects an
exotic hierarchy topological inherent in the QTIs [35,36].

Comparing with the other 2D HOTIs, the corner states of
QTIs are stably pinned to the middle of the bulk gap due to
the inherent chiral symmetries, and thus persist as long as the
bulk band exhibits nontrivial quadrupole moment. Though
broad attention received, experimental studies on such 2D
QTIs are still rather limited [37–39,41]. The QTI theory
proposed with a square-lattice tight-binding (TB) model
[35,36] requires a π flux per plaquette. This demands both
positive and negative hoppings in a spinless and time-
reversal invariant classical system, where the hoppingsmust
be real valued. However, fulfilling this harsh requirement
usually involves fine-tuning of the parameters [37,41,54],
and hence hinders the experimental implementation of
the classical QTIs. In particular, so far there is no exper-
imental progress reported for acoustic QTIs, since there is
no feasible route proposed to control the sign of acoustic
couplings.
In this Letter, we conceive a simple mechanism to

generate both positive and negative hoppings in acoustics.
That is, linking acoustic cavities with different connectivity
according to the field morphologies of acoustic resonators.
After testing the design route of controlling hoppings, we
present an experimental realization of the acoustic QTI that
stringently fulfills the 2D TB model proposed for QTIs
[35,36]. The hierarchy topology of our acoustic QTI has
been conclusively identified through detecting the acoustic
responses at the bulk, edge, and corner. In particular, our
acoustic QTI exhibits a big bulk gap and the topological
corner states are well separated from the gapped edge and
bulk states, which is crucial in practical applications such as
creating topologically stable acoustic enhancement. All
experimental data agree excellently with our numerical
simulations performed with COMSOL Multiphysics.
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Design route of positive and negative hoppings in
acoustics.—As stated above, a prerequisite for realizing
acoustic QTIs is to design positive and negative hoppings
independently. So far, there is no explicit route conceived to
accomplish this goal, despite the fact that TB models have
been frequently implemented in acoustics. Here, we start
from two identical resonators connected with a coupler,
associated with effective Hamiltonian

H ¼
�
ω0 κ

κ ω0

�
; ð1Þ

in which ω0 is the frequency of the two resonators, and κ
represents a real-valued coupling coefficient between them.
The composed system exhibits split eigenfrequenciesω� ¼
ω0 � κ associated with eigenvectors ð1= ffiffiffi

2
p Þð1;�1ÞT : the

signs þ and − characterize the modes formed by in-phase
and out-of-phase couplings, respectively. Therefore, a
negative (positive) coupling κ suggests that the in-phase
coupled mode has an energy lower (higher) than that of out-
of-phase one. This is illustrated in Figs. 1(a) and 1(b) by a
coupled Pz-dipole system. In acoustics, both configurations
can be implemented by a pair of identical air cavities
coupled with narrow tubes, which are distinguished with
straight-linked and cross-linked connectivity, as shown
in Figs. 1(c) and 1(d). Physically, the cavity resonators
emulate atomic orbitals and the narrow tubes introduce
hoppings between them. Here, the cavity parameters
l ¼ 8.12 cm, w ¼ 6.90 cm, and h ¼ 10.45 cm are selected
to ensure the frequency of the Pz mode (1627 Hz) far away
from the other cavity modes (Supplemental Material [55]).

When the air cavities are straightly connected with two
identical tubes (of diameter d ¼ 2.32 cm and length
s ¼ 3.48 cm, at a distance of h=4 to the top or bottom
surface), the composed system exhibits an in-phase coupled
Pz mode at a frequency (1606 Hz) lower than that of the out-
of-phase one (1675 Hz). That is, the straight-linked system
has a negative coupling for Pz modes. By contrast, the
system exhibits a positive coupling when the cavities are
crosswise connected, in which the in-phase coupled mode
occurs at a frequency (1648 Hz) higher than that of the out-
of-phase one (1594 Hz). Note that the hopping strengths
dependmostly on the sizes and positions of the narrow tubes,
and the central frequencies of the coupled systems may shift
from the single cavity resonance due to the introduction of
coupling tubes (Supplemental Material [55]).
Experimental identification of the sign of the designed

hoppings.—The design route for achieving desired hopping
sign was confirmed in our airborne sound experiments.
Figures 2(a) and 2(b) show the experimental setups. The
samples were fabricated precisely via a mature 3D-printing
technique with photosensitive resin, which can be safely
viewed as acoustically rigid for airborne sound. For each
case, a broadband pointlike sound source, launched from a
subwavelength-sized tube, was injected into the right cavity
from the backside, and the pressure responses of four
typical positions were detected through the holes (of radii
∼0.4 cm) perforated in the front of the sample, which were
sealed when not in use. Figures 2(c) and 2(d) present the
measured amplitude spectra (color circles) for the straight-
linked and cross-linked systems, respectively, together
with the simulation results (color lines) for comparison.
(Each amplitude spectrum was normalized by the meas-
urement without sample and then rescaled to its maximum.)
As expected, in each case two resonance peaks emerge near
the eigenfrequencies (green arrows) of the coupled Pz
modes. Figures 2(e) and 2(f) present the phase spectra
under the reference of the position 4, which show clearly a
phase difference ∼π between the positions 1 and 2 (or 3
and 4), an indication of the Pz modes in both configura-
tions. In particular, for the straight-linked cavity structure
[Fig. 1(e)], the phase difference between the positions 1
and 3 (or 2 and 4) approaches zero at the lower frequency
while approaches π at the higher frequency. This concludes
unambiguously a negative hopping since the in-phase
coupled mode occurs at the lower frequency than that of
out-of-phase one. In contrast, for the cross-linked structure
[Fig. 1(f)], the phase responses indicate an in-phase mode
at the higher frequency and thus conclude a positive
hopping. All the experiments match quantitatively with
the simulations. It is worth pointing out that here we take
advantage of the unique field profile of the Pz mode to
achieve positive and negative hoppings independently.
In fact, the cavity also supports the Px dipole at a higher
frequency; however, both configurations contribute positive
hoppings for the Px mode (Supplemental Material [55]).

(a)

(b)

(c)

(d)

FIG. 1. (a),(b) Sketches of the split energy levels for two
coupled Pz dipoles with hoppings κ < 0 and κ > 0, respectively.
For the case of κ < 0 (κ > 0), the in-phase coupled mode has an
energy lower (higher) than that of out-of-phase one. (c),(d)
Acoustic realizations of the negative and positive hoppings with
coupled resonators, respectively. Left: Double cavity structures
coupled with different connectivity. The resonance cavities
(yellow) and narrow tubes (red or blue) are filled with air and
bounded with hard boundaries. Right: Pressure distributions at
given eigenfrequencies.
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Acoustic QTI and topological in-gap states.—Our design
starts from the square-lattice TB model for QTI theory
[35,36]. As sketched in Fig. 3(a), each unit cell contains
four sublattices: the yellow disks represent lattice sites and
the bonds are hoppings between them. For a spinless and
time-reversal invariant system, the hoppings can only be
real, either positive or negative. Considering the fact that
each plaquette possesses a flux of π, the hoppings herein
cannot be all positive or negative. Figure 3(a) shows one
configuration that satisfies this requirement, providing that
the intracell hoppings γ2 ¼ −γ1 and the intercell hoppings
λ2 ¼ −λ1. In particular, the unit cell exhibits a nonzero
quadrupole moment if jλ1;2j > jγ1;2j and zero quadrupole
moment if jλ1;2j < jγ1;2j. These two topologically distinct
quadrupole phases, denoted by A and B for brevity, can be
constructed directly in acoustic systems following the
above design route for positive and negative hoppings.
As exhibited above, the signs of the acoustic hoppings can
be controlled by the connectivity of the coupling tubes, the
strengths of hoppings can be engineered by tuning the
positions and sizes of the coupling tubes, and the onsite

energy depends mostly by the geometry of cavity reso-
nators. As such, topologically distinct quadrupole insula-
tors can be achieved by tailoring the geometric para-
meters of the coupling tubes. In fact, the phase B can
be simply realized by switching the values of the inter- and
intracell hoppings predesigned for the phase A, associated
with the same band structure. According to the generalized
bulk-boundary correspondence [35,36], topologically pro-
tected in-gap states can be observed at the edges and
corners formed between A and B, as to be shown in
Fig. 3(d).
Figure 3(b) shows the unit structure of our acoustic QTI.

It has an in-plane lattice constant of 4.2 cm and a finite
height of 2.0 cm in the z direction. Critically, the designed
acoustic structure carries positive (red) and negative (blue)
hoppings, which are distributed according to the TB model
in Fig. 3(a). The elementary structures are a bit more
complex than those presented in Fig. 1, in order to satisfy
the TB model in a quantitative way (see details in
Supplemental Material [55]). Figure 3(c) shows the band
structure for this acoustic system. The lower four bands
(gray solid lines) are formed by the S modes featured with
uniform field patterns inside the cavities. In contrast, the
upper four bands (black solid lines) are formed exactly by
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FIG. 2. (a),(b) Experimental setups for testing the hopping
signs of the straight-linked and cross-linked double cavity
systems, respectively. The acoustic signal is injected from the
backside of the sample, and four typical positions (labeled with
color circles) in the front are used for detection. (c),(d) Measured
(circles) and simulated (lines) pressure amplitude responses at the
four locations (plotted with consistent color). The green arrows
indicate the eigenfrequencies of the coupled Pz modes. (e),(f) The
associated phase spectra.
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FIG. 3. (a) Square-lattice TB model with positive (red) and
negative (blue) nearest-neighbor hoppings λ1;2 and γ1;2, where the
shaded square sketches a four-site unit cell. This hoping dis-
tribution results in a π flux per plaquette. (b) Unit structure of our
acoustic system that emulates the TB model: yellow for resonant
cavities, and blue and red for coupling tubes. (c) Band structure.
The Pz bands (black solid lines) are captured well by the TB
model (green dashed lines). Inset: the first Brillouin zone of the
square lattice. (d) Eigenvalue spectrum for a finite-sized sample
constructed with the topologically distinct quadruple phases A
and B (inset), identified with bulk, edge, and corner states
through inspecting eigenfields.
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Pz modes, each two of which are nearly doubly degenerate.
All the Pz bands are captured precisely by the TB model
(green dashed lines) with fitting parameters λ1 ¼ −λ2 ¼−455 Hz, γ1 ¼ −γ2 ¼ −57 Hz, and the onsite energy
5830 Hz. Remarkably, a big omnidirectional band gap
(∼1060 Hz, associated with a gap-to-midgap ratio ∼18%)
emerges between the two pairs of Pz bands, which is
induced by the strong dimerization (jλ1;2j=jγ1;2j ≈ 8.0) and
matches well the value 2

ffiffiffi
2

p ðjλ1;2j − jγ1;2jÞ derived from
the TB model (Supplemental Material [55]). In order to
demonstrate the higher-order topological effect, in Fig. 3(d)
we present the simulated eigenfrequency spectrum for a
finite-sized sample (12 × 12 unit cells in total, see inset).
As expected, it shows clearly the coexistence of the
topologically protected 1D edge states and 0D corner
states inside the bulk gap. Physically, both the topological
in-gap states are originated in the bulk topology of the QTI:
the gapped edge states stem from the nontrivial surface
dipole quantization, whereas the topological corner states
come from the nontrivial quadrupole quantization [35,36].
(As such, these in-gap topological responses depend mostly
on the geometries of the coupling tubes.) In particular, the
big bulk gap and the spectrally well-isolated topological
corner states greatly facilitate the experimental characteri-
zation of the cascade hierarchy of quadrupole topology in
our system. Note that the corner modes are not perfectly
degenerate (associated with a frequency split ∼1.7% with
respect to the bulk gap), because of the unavoidable next-
nearest-neighbor coupling or coupling to other bands
[37,56], which is beyond the description of the TB model
presented in Refs. [35,36].

Experimental demonstration of the hierarchy
quadrupole topology.—The higher-order topology of the
acoustic QTI was identified by our experiments. Figure 4(a)
shows the experimental setup. As considered in Fig. 3(d),
our sample has a size of 12 × 12 unit cells (576 resonators
in total), where the site cavities were colored to distinguish
the topologically different quadrupole phases A and B. To
map out the 2D field profiles, each site cavity was
perforated with a hole (sealed when not in use) for inserting
the acoustic source or detector. To confirm the coexistence
of the bulk, edge, and corner modes, we first measured the
frequency-resolved acoustic responses for three typical
pump-probe configurations. In each case, the positions
of the acoustic source and detector are highlighted by the
color star and square [Fig. 4(a)]. Figure 4(b) shows the
corresponding intensity spectra detected for the three
independent experiments. As expected, the bulk spectrum
(black) exhibits two intensity peaks (centered at 5260 and
6412 Hz) and identifies the wide bulk gap between the two
pairs of Pz bands in Fig. 3(c). The edge spectrum (purple)
exhibits two peaks (around 5410 and 6076 Hz) within the
bulk gap, which correspond exactly to the gapped 1D edge
states. By contrast, in addition to the minor peaks contrib-
uted from the bulk and edge states, the corner spectrum
(blue) shows one prominent peak (centered at 5658 Hz)
inside the common gap of the edge and bulk states, which
serves as unambiguous evidence for the presence of
topological corner states. (The peak broadening mainly
comes from the unavoidable material absorption and
fabrication error of the sample.) All the spectra match
excellently the simulation results presented in Fig. 4(c), in
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measured bulk (black), edge (purple), and corner (blue) spectra. (c) Numerical comparison of (b). (d)–(f) Measured and simulated
pressure amplitude distributions for the bulk, edge, and corner states, respectively, plotted in logarithmic scale with bright (dark) for
strong (weak) field. The frequencies correspond to the peaks labeled in (b) and (c). In each case, the white star indicates the position of
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which a uniform dispassion loss was used (Supplemental
Material [55]). To conclusively verify the cascade hierarchy
of high-order topology, we further scanned and charac-
terized the field distributions at the peak frequencies of the
bulk, edge, and corner spectra. As shown in Figs. 4(d)–4(f),
the measured field patterns (left panels) directly visualize
the features of the bulk, edge, and corner states, respec-
tively, again in good agreement with the numerical results
(right panels).
Conclusions.—We have designed an acoustic QTI that

follows the TB model proposed for QTI theory, and
experimentally validated the hierarchy quadrupole topol-
ogy through measuring the topological 1D edge states and
0D corner states. The positive and negative hoppings are
conceived independently by introducing different connec-
tivity between acoustic resonators. Instead of multipole
resonators [37], here dipole resonators are used to achieve a
wide bulk gap, which facilitates the experimental charac-
terization of the hierarchy topology of our acoustic QTI. In
addition, an arbitrary controlling of the real-valued hop-
pings enables the further investigation of rich physics
inherent in engineering Z2-gauge flux [54,57,58]. Note
that the corner states are topologically stable even in the
presence of disorders (see Supplemental Material [55]), as
long as the chiral symmetry of the acoustic structure is
ensured by its fabrication. This enables a robust and precise
control of sound energy concentration, and thus points to a
wide range of application avenues that demand highly
localized strong sound fields, such as sound energy harvest-
ing, acoustic sensing, and trapping microparticles by
acoustic radiation force.
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Note added.—Recently, we became aware of one work that
realized acoustic QTIs based on the nonsymmorphic
symmetry of sonic crystals [59]; we also notice that similar
approaches were introduced to construct acoustic octupole
topological insulators [60,61].
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