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Do electrons become ferromagnetic just because of their repulsive Coulomb interaction? Our
calculations on the three-dimensional electron gas imply that itinerant ferromagnetism of delocalized
electrons without lattice and band structure, the most basic model considered by Stoner, is suppressed due
to many-body correlations as speculated already by Wigner, and a possible ferromagnetic transition
lowering the density is precluded by the formation of the Wigner crystal.

DOI: 10.1103/PhysRevLett.124.206404

In 1929, Bloch addressed the possibility of itinerant
ferromagnetism [1] where the same electrons forming
the conducting state give also rise to ferromagnetism.
Considering the free homogeneous electron gas (jellium)
as a minimal model to describe electrons in a metal, he
concluded that the exchange energy may lead to a ferro-
magnetic state at densities slightly below those occurring in
alkali metals. Considering correlation between positions of
electrons with antiparallel spin, Wigner [2,3] approxi-
mately calculated the correlation energy—the gain of
energy compared to the Hartree-Fock approximation—and
pointed out the possibility of crystalline order at low
densities. In the same paper [2], he also anticipated that
the magnitude of the correlation energy is important for
questions of para- and ferromagnetism modifying Bloch’s
theory on itinerantmagnetism. Later, Stoner [4] predicted the
occurrence of a continuous transition between zero and full
magnetization at zero temperature introducing a repulsive
energy term between opposite spin electrons to phenom-
enologically account for correlation effects. The threshold
of the ratio between this repulsive interaction constant and
the Fermi energy is now commonly known as the Stoner
criterion.
The question whether pure Coulomb interactions

between electrons can drive a magnetization transition
without accompanying structural changes has a long and
controversial history, starting from Bloch’s prediction [1].
Based on the Hartree-Fock approximation, he considered
the possibility of a first order (discontinuous) transition to a
fully polarized, ferromagnetic electron liquid for electronic
densities n, slightly lower than those of alkaline metals,
rs ≡ a=aB > 5.45, where aB is the Bohr radius and a ¼
ð4πn=3Þ−1=3 is the mean electron distance. The first
variational Monte Carlo (VMC) calculations [5] taking

into account electron correlations without relying on pertur-
bative high or low density expansions indicated a totally
polarized quantum fluid for rs > 26ð5Þ before the occur-
rence of a Wigner crystal at rs ¼ 67ð5Þ. More accurate
calculations based on fixed-node diffusion Monte Carlo
(DMC) and transient estimates releasing the nodal constraint
subsequently shifted the ferromagnetic liquid to lower
densities [6,7], 75ð5Þ < rs < 100ð20Þ. Later calculations
[8] predicted a partial polarization of up to 50% in the range
20≲ rs ≲ 100. Two decades later, new calculations [9] with
larger system sizes observed a continuous transition from the
paramagnetic to the ferromagnetic fluid around rs ¼ 20ð5Þ
reaching full polarization around rs ¼ 40ð5Þ before freezing
at rs ¼ 65ð10Þ. The most recent quantum Monte Carlo
(QMC) calculations [10], reducing systematic errors of the
thermodynamic limit extrapolation and of the fixed-node
bias, again support Stoner’s picture of a continuousmagnetic
transition, but with an onset of partial spin polarization at
rs ¼ 50ð2Þ and completion of full polarization at rs ≈ 100,
just beforeWigner crystallizationwhich is estimated to occur
at rs ¼ 106ð1Þ in Ref. [11].
Physical realization of such low density electron liquids at

low temperatures is extremely challenging, and experimental
findings [12] are controversial due to finite temperature and
band structure effects [13,14]. Recent experimental efforts
have been devoted to realize Stoner’s model within ultracold
atomic gases [15,16], where the interaction between two
fermions is essentially described by momentum and energy
independent s-wave scattering. However, there, the strong
repulsive s-wave interaction is intrinsically connected with a
short range interparticle bound state leading to molecule
formation. Although local spin correlations have been
observed, the interpretation of the experimental observations
is not straightforward.

PHYSICAL REVIEW LETTERS 124, 206404 (2020)

0031-9007=20=124(20)=206404(5) 206404-1 © 2020 American Physical Society

https://orcid.org/0000-0002-3862-2919
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.124.206404&domain=pdf&date_stamp=2020-05-21
https://doi.org/10.1103/PhysRevLett.124.206404
https://doi.org/10.1103/PhysRevLett.124.206404
https://doi.org/10.1103/PhysRevLett.124.206404
https://doi.org/10.1103/PhysRevLett.124.206404


In this Letter, we show that Stoner’s instability is
precluded by the transition to the Wigner crystal and argue
that itinerant magnetism is quite generally suppressed by
correlation effects in the ground state of homogeneous
quantum fluids with spin-independent repulsive inter-
actions. Specifically, we present new results for jellium
in three dimensions based on a sequence of wave functions
featuring iterative backflow transformations [17,18] within
the variational and the more accurate fixed-phase diffusion
Monte Carlo methods [19,20]. Zero-variance extrapolation
[17] of the ground state energies at finite system size allows
us to reliably control the remaining, systematic bias of the
fixed-phase DMC calculations. Finite-size corrections due
to single-particle shell effects [21] and two-body terms
[22–24] are applied for thermodynamic limit extrapolation.
Improved accuracy proves crucial, as our calculations show
that many-body correlations of the ground state wave
function favor the unpolarized phase of the electron liquid
compared to partial or fully polarized states and eventually
prevent itinerant magnetism in jellium at any densities above
crystallization.We also update the density of the transition to
the Wigner crystal to a slightly lower value, rs ¼ 113ð2Þ.
Methodological and computational improvements of the

accuracy of QMC calculations thus seem to parallel the
historical developments on the two-dimensional electron
gas. The first QMC results [5,25] indicated an intermediate
region with a fully polarized liquid ground state, shrinking,
subsequently, to a weakly first-order polarization transition
occurring just before Wigner crystallization [26,27], and,
finally, disappearing completely [28] following improve-
ments to the fixed node bias and finite-size methodology.
Taking further into account the absence of a polarized

phase in 3He, a strongly correlated Fermi liquid with an
effective dominant hard-core interaction, we arrive at the
quite general conclusion that pure correlation effects in
homogeneous quantum liquids tend to suppress itinerant
magnetization, in contrast to common argumentations
based on Stoner’s model. In these systems, crystallization,
the spontaneous breaking of translational symmetry, seems
to win the competition against spontaneous magnetization.
In the following, we describe the details of our numerical

methods to determine the low-density ground state phase
diagram of jellium–nonrelativistic electrons interacting via
Coulomb’s potential with each other and with a homo-
geneous positive background to guarantee charge neutrality
[29,30]. The ground state energy per electron of the model at
three values of the electronic density n, corresponding to
rs ¼ 70, 100, and 120, and six different spin polarizations
ζ ¼ 0.0, 0.18, 0.42, 0.61, 0.79, and 1.0, is addressed by
variational and diffusion Monte Carlo simulations [19] of a
finite system containingN ¼ 66 electrons imposing periodic
boundary conditions for the particles’ positions; the long-
range Coulomb potential is evaluated by standard splitting
into real and reciprocal space contributions [31,32].
In the DMC runs [33], the number of walkers is 1280 and

the time step is 15, 20, and 30 Ry−1 for rs ¼ 70, 100, and

120, respectively. The estimated time step error is 10−7 Ry
or less, which is about the size of the statistical error on our
final results (the zero-variance extrapolation of the DMC
energy, see below). The population control bias is even
smaller, of the order of 10−8 Ry.
The accuracy of the ground state energy of a finite

system is limited by the underlying many-body trial wave
function Ψ used for calculating expectation values in VMC
[19] and for imposing the phase in DMC [20], respectively.
In order to remove such a bias, we consider a series of trial
wave functions of increasing quality, starting from the
standard Jastrow-Slater and backflow forms (SJ and BF0)
[10], and adding up to four iterative backflow transforma-
tions (BF1;…;BF4) [17].
Specifically, the Jastrow-Slater wave function SJðRÞ

explicitly depends on the coordinates R of all the particles
through the two-body pseudopotential u0 in the Jastrow
factor exp½−U0ðRÞ�, and through plane-wave orbitals in the
Slater determinant DðRÞ. We then recursively build sets of
transformed coordinates Q0;…;Qk, where Qi depends on
Qi−1 through the ith backflow pseudopotential ηi, with
Q−1 ≡R. The kth iterative backflow wave function is

BFkðRÞ ¼ exp½−U0ðQ−1Þ − � � � − UkðQk−1Þ�DðQkÞ: ð1Þ

For the backflow wave functions we include both two- and
three-body pseudopotentials u0 and ξ0 in expð−U0Þ, and
only two-body pseudopotentials ui in expð−UiÞ for
i ¼ 1;…; k. The plane-wave orbitals in the Slater deter-
minant are evaluated at the last set of transformed coor-
dinates, Qk.
The two-body pseudopotential u0 is initially of the RPA

form [5] with an explicit long-range part in Fourier space
spanning the first 20 shells of reciprocal vectors, and the
real-space part represented by locally piecewise-quintic
Hermite interpolants (LPQHI) with 8 degrees of freedom,
which are subsequently treated as optimization parameters.
The three-body pseudopotential (ξ0), the backflow pseu-
dopotentials (ηi with i ¼ 0;…; k), and the two-body
pseudopotentials in the transformed coordinates (ui with
i ¼ 1;…; k) are all expressed as LPQHI with 6 degrees of
freedom each, with the exception of η0 which is augmented
with 5 shells of Fourier components. The LPQHI coef-
ficients of all the pseudopotentials, as well as the Fourier
components of η0, are optimized independently for each
wave function in the hierarchy.
The energy E computed for rs ¼ 100 in VMC and

DMC simulations using all the above wave functions is
plotted in Fig. 1 against the corresponding VMC variance
σ2 ¼ hΨjðH − hΨjHjΨiÞ2jΨi. The exact ground-state
energy, which has zero variance, can be reliably estimated
by extrapolation [17], given the smoothness of the data over a
significant range extending to very low values of σ2. We
assume a quadratic dependence ofE on σ2. Since the range of
validity of such a dependence is not known, we perform the
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extrapolation with and without the highest energies and
variances, obtained with the SJ wave function. The result
does not change significantly if we include the SJ result
and/or switch between VMC and DMC data for the extrapo-
lation. In particular, Fig. 2 shows that the polarization energy
is only marginally influenced by the choice of the dataset.
Twist-averaged boundary conditions [21,33] are used to

reduce shell effects of the finite simulation cell and afford
thermodynamic limit extrapolation without resorting to
large simulation cells. Residual single particle shell effects
due to the discrete twist grid and to reduced-symmetry
open-shell fillings for finite polarizations with N ¼ 66,
ΔT0, are estimated from the noninteracting electron gas.

Two-particle finite-size corrections for the potential and
kinetic energy, ΔFSE, are addressed by interpolation of the
long-range part of the static structure factor and by the
analytical long-range expressions for the two-body and
backflow pseudopotentials u0 and η0 of the wave function
[23,34,35]. In contrast to the high density limit [36,37],
where residual size effects in the kinetic energy introduce
quasirandom fluctuations in the extrapolation, these effects
are suppressed in the large rs region addressed here (see
Supplemental Material [33]). Furthermore, at low densities,
the corrections ΔFSE are largely dominated by the zero-
point energy of the plasmon [22]. Whereas the single
particle size corrections depend on the spin polarization,
the long-range structure factor does not reveal any sys-
tematic dependence on ζ within the statistical error of the
present simulations. Therefore, we average the structure
factor over spin polarizations in the calculation of ΔFSE,
so that the final polarization energy is not affected by
statistical fluctuations in the estimates of ΔFSE. Only the
absolute value of the estimated ground state energy, used
below to locate the Wigner crystallization, is then suscep-
tible to the details of the calculation of ΔFSE.
The results for the energies and the variances obtained

with different trial wave functions, the zero-variance
extrapolations, and the finite-size corrections are collected
in the Supplemental Material [33]. Note that the variance
extrapolation is done on the energies of the finite-size
system, and size corrections (for the polarization energy
and the Wigner crystallization) are applied afterwards,
using the value of ΔFSE obtained at the highest wave
function level.
The final polarization energy of jellium at low densities,

our main result, is shown in Fig. 3 for rs ¼ 70, 100, and
120. It is obtained from the zero–variance extrapolation of
the DMC energy, excluding the SJ result. This choice gives
the smoothest polarization energy, as well as the lowest χ2

in the fit to the energy vs variance data, but it is otherwise
uninfluential for the oucome that EðζÞ is higher than Eð0Þ
for all the densities considered, and therefore a partially or
fully polarized state is never stable. Confidence levels for
our conclusion are given in the Supplemental Material [33].
The zero-variance extrapolation of the DMC energy,

corrected for finite-size effects, is compared in Fig. 4 with
the fixed-node DMC energy [19] of the Wigner crystal of
Ref. [11] as a function of rs. For the crystal phase, finite-
size effects are assessed using large simulation cells with up
to 512 electrons [11]. This procedure differs from that used
in the present work for the liquid phase, but it should be
equally reliable. The fixed-node DMC bias [19] for the
crystal phase is negligible: it is bounded by (and presum-
ably much smaller than) the difference between the fixed-
node energy and the exact bosonic ground-state energy,
which we find to be of the order of the statistical error on
the crystal data of Fig. 4. The critical value for the Wigner
crystallization is shifted to rs ¼ 113ð2Þ, where the
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uncertainty includes both the statistical error of the sim-
ulation data and a conservative estimate of the residual bias
in the size corrections [33].
In this Letter, we have presented accurate quantum

Monte Carlo calculations addressing the possibility of a
magnetically polarized fluid in the ground state phase
diagram of the homogeneous electron gas. We have shown
that iterated backflow wave functions [17,18] provide
highly accurate results for the energy and very low values
of its variance, such that a zero variance extrapola-
tion provides fairly unbiased results for the polarization
energy. Our calculations clearly demonstrate that the
simple mean-field picture based on Stoner’s model is not

sufficient to explain itinerant ferromagnetism as the parti-
ally or fully polarized fluid state is unstable versus Wigner
crystallization.
Therefore, in addition to repulsive interparticle inter-

actions, band structure effects must play an essential
role for the occurrence of itinerant ferromagnetism in real
materials.
Similar results have been found for liquid 3He in two

[17,38] and three dimensions [18,39], the two-dimensional
electron gas [28], and two-dimensional quantum gases with
repulsive dipolar interaction [40], where accurate, quanti-
tative treatment of correlation effects have always stabilized
the spin-unpolarized phase.
From a more general point of view, Stoner’s instability

constitutes a reconstruction of the Fermi surface of the
unpolarized to the polarized gas due to interactions.
However, this instability is quite naturally in competition
with the reconstruction of the Fermi surface related to spin
and charge density waves [41–43] (not addressed in this
work) or Brillouin zone formation for Wigner crystalliza-
tion. Despite the quite different interparticle interaction,
hard or soft core potentials, the Stoner transition to a spin-
polarized phase predicted within mean-field arguments
seems to be quite generally preceded by transition to a
crystalline phase for homogeneous systems with spin-
independent interactions.
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