
 

Evidence of Large Polarons in Photoemission Band Mapping
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Lead-halide perovskite (LHP) semiconductors are emergent optoelectronic materials with outstanding
transport properties which are not yet fully understood. We find signatures of large polaron formation in the
electronic structure of the inorganic LHP CsPbBr3 by means of angle-resolved photoelectron spectroscopy.
The experimental valence band dispersion shows a hole effective mass of 0.26� 0.02me, 50% heavier than
the bare mass m0 ¼ 0.17me predicted by density functional theory. Calculations of the electron-phonon
coupling indicate that phonon dressing of the carriers mainly occurs via distortions of the Pb-Br bond with
a Fröhlich coupling parameter α ¼ 1.81. A good agreement with our experimental data is obtained within
the Feynman polaron model, validating a viable theoretical method to predict the carrier effective mass of
LHPs ab initio.
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Hybrid organic-inorganic and inorganic lead-halide per-
ovskites (LHPs) rival conventional semiconductors in
multiple optoelectronic applications. LHP-based solar cells
have established energy conversion efficiencies approach-
ing 25% [1]; light-emitting devices [2] and lasers [3] are
gaining considerable interest thanks to high luminescence
quantum efficiency [4]. The carrier diffusion length is
exceptionally long in LHPs, reaching up to several microm-
eters [5,6]. This property results from the long carrier
lifetimes, rather than from the carrier mobility [7]. While
theory predicts small effective masses [8–13] (≈0.1–0.3me,
where me is the free electron mass), the reported mobilities
are orders of magnitude lower than in conventional inor-
ganic semiconductors [7,14]. The microscopic mechanism

underlying this unusual combination of transport properties
is possibly the interplay between carriers and the ionic
perovskite lattice [7,15]. In a polar crystal, longitudinal-
optical (LO) phonon modes have a sizable long-range
interaction with charge carriers, resulting in the formation
of so-called Fröhlich polarons [16]. The polaron, heavier
than a bare carrier, has a reduced mobility, compatible with
the observed transport properties [15,17]. In particular, the
screening of the Coulomb potential ismodified in the case of
polarons, purportedly explaining the observed carrier life-
times [17,18].
The optical properties of different LHPs are known to

critically depend on the details of the lead-halide bond
angles [19], highlighting the importance of carrier-lattice
coupling in the photophysics of LHPs. The presence of
polaron quasiparticles was indeed already proposed to
model the results of several optical studies [17,18,20].
In this Letter we report on experimental evidence of

polaron formation by measuring its fingerprint in the
electronic structure. We concentrate on the prototypical
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inorganic LHP CsPbBr3, which has lately attracted interest
for applications, due to better thermal and radiation stability
compared to hybrid organic-inorganic LHPs [21–25]. The
momentum-resolved electronic structure of CsPbBr3 is
determined by angle-resolved photoelectron spectroscopy
(ARPES) and compared with ab initio density functional
theory (DFT). Our ARPES data provide a direct measure-
ment of the hole effective mass (mexp) in CsPbBr3. The
experiment reveals a mass enhancement of 50% compared
to theory, which we attribute to electron-phonon coupling.
Ab initio simulations of electron-phonon interaction show
that Pb-Br stretching modes dominate the interaction.
Furthermore, our calculations provide a Fröhlich coupling
parameter α ¼ 1.81, indicating that carriers form large
polarons, and predict a mass renormalization in good
agreement with experimental data.
At room temperature CsPbBr3 assumes an orthorhombic

lattice structure, which departs from the ideal cubic
perovskite structure. The transition to the orthorhombic
phase occurs below 360 K by rotation of the ½PbBr6�4−
octahedra surrounding the Csþ cation [26]. The ortho-
rhombic structure is compared to an undistorted cubic one
in Fig. 1(b), showing its larger real-space primitive cell and
the octahedra’s canting angle of approximately 10° [14].
High-quality single crystals of CsPbBr3 were grown

from liquid solution using an inverse temperature crystal-
lization method [27]. The CsPbBr3 crystals were cleaved
in situ under ultrahigh vacuum conditions. ARPES

experiments were performed using extreme ultraviolet
radiation from a high-harmonic laser source with a tunable
photon energy between 20 and 40 eV [28,29]. All data were
collected at room temperature, in the orthorhombic phase
of CsPbBr3, as confirmed by x-ray diffraction [30–52]. To
rationalize the experimental results, we perform ab initio
calculations using the Quantum ESPRESSO distribution
[53,54]. The electronic structure was obtained at the
generalized Kohn-Sham level using the hybrid functional
scheme proposed by Heyd, Scuseria, and Ernzerhof [55,56]
(HSE) for the exchange and correlation energy functional.
The electron-phonon interaction was accounted for within
the Fröhlich model [57] with parameters obtained averag-
ing the ab initio Fröhlich vertex [58,59]. Further details
concerning the experimental methods and the DFT calcu-
lations are given in the Supplemental Material [30].
The valence band (VB) photoemission intensity distri-

bution is plotted as a function of energy and in-plane
momentum wave vectors in Fig. 1(d), for a photon energy
of 37 eV. The left half of Figs. 1(e) and 1(f) shows two cuts
at constant energy of the three-dimensional ARPES inten-
sity distribution, at the valence band maximum (VBM) and
1.1 eV below the VBM. The energy zero was set at the
VBM, determined from the energy of the peak maximum.
Four valence band maxima are clearly resolved at the

four corners (M̄) of the surface-projected Brillouin zone
(SBZ), following the periodicity expected for the cubic
phase of the system, despite the structural phase transition

(a) (c) (e)

(b) (d) (f)

FIG. 1. Schematic structure of CsPbBr3: (a) Cubic perovskite structure; ½PbBr6�4− octahedra are indicated as shaded-gray surfaces,
Pb2þ ions are indicated in black, Br− ions in red, and the Csþ cation in gold. (b) The orthorhombic lattice distortion (semitransparent
lines) is compared to the parent cubic lattice (full lines). (c) Three-dimensional Brillouin zone of the cubic crystal lattice; (d) VBARPES
intensity as a function of energy, E and in-plane momentum wave vectors, kx and ky. The cubic and orthorhombic unit cells are indicated
in red and black, respectively. (e),(f) Constant energy cuts of the ARPES intensity compared with DFT calculations for the cubic phase
integrated over a range of 0.1 Å−1 along the k⊥ direction at the VBM [E ¼ 0 eV, (e)] and below the VBM [E ¼ −1.1 eV, (f)].
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to orthorhombic. This is illustrated in the right half of
Figs. 1(e) and 1(f), where the data is compared to DFT
calculations for the cubic phase of CsPbBr3.
This is at odds with DFT calculations for the ortho-

rhombic phase, which predicts the VBM at the Γ̄ point
[30,60]. To exclude matrix element effects and dispersion
in the direction orthogonal to the sample surface (k⊥), we
performed energy- and polarization-dependent ARPES
measurements [30], which reveal no signature of an addi-
tional VBM at the Γ̄ point. The observation of a larger
k-space periodicity is not compatible with the scenario of a
surface reconstruction. The additional potential associated
with a periodic lattice distortion generally manifests itself
with the appearance of backfolded bands and gaps opening
at the novel Bragg planes. However, the spectral weight
transfer to the novel bands is proportional to the strength of
the perturbing potential and often hardly observable [61],
e.g., for the methylammonium lead triiodide perovskite
(MAPbI3) [62,63], where no signatures of backfolded
orthorhombic bands were observed by ARPES, despite a
clear orthorhombic diffraction pattern. To calculate explic-
itly the spectral weight transfer upon the structural dis-
tortions, we follow a band unfolding procedure proposed
by Ku et al. [64] and implemented in the Quantum ESPRESSO

package [65]. The calculations confirm the absence of
significant spectral weight transfer to the backfolded upper
valence band in the orthorhombic phase [30]. For this
reason we maintain the cubic phase notation for high-
symmetry points throughout the text.
The material’s band structure has been investigated as

a function of the photon energy, and Fig. 2 shows the
measured valence band at 33.5 eV, the VBM is found to
correspond to k⊥ ≃ 0.5 Å−1, close to the cubic bulk R point
[30]. The data correspond to the band dispersion along the
Γ̄ − M̄ − X̄ − Γ̄ path of the surface Brillouin zone and are
compared with the spectral weight of the orthorhombic
bands unfolded on the cubic X − R −M − X path. The
upper valence band disperses for approximately 1.5 eV
below the VBM, before reaching a deeper valence mani-
fold, where bands are not individually resolved.
Although in the room-temperature orthorhombic phase

the ARPES spectral weight follows qualitatively the DFT
bands for the cubic phase, the band dispersion is modified
by the structural distortion. In fact, the effective mass
computed for the orthorhombic phase is 0.17me, larger
than the cubic phase mass of 0.12me [30]. To determine the
experimental hole effective mass, we turn to a quantitative
analysis of the upper valence band dispersion which we
compare with ab initio calculations for the orthorhombic
structure. ARPES data along the Γ̄ − M̄ direction are shown
in Fig. 3. The VB energy distribution curves are well fitted
by a Gaussian line shape whose width (which is not
resolution limited) is likely determined by thermal broad-
ening with possible contributions from disorder and
orthogonal momentum dispersion. To determine mexp,

the valence band was fitted with a parabolic dispersion
around the band maximum [30], the corresponding fit is
shown in Fig. 3. The obtained valuemexp ¼ 0.26� 0.02me

is in good agreement with optical measurements on
CsPbBr3 [66], where a reduced exciton mass of mexc ¼
0.126me was deduced, if one assumes balanced electron

FIG. 2. Photoemission intensity as a function of energy and
parallel momentum, along the path Γ̄ − M̄ − X̄ − Γ̄. Cyan lines:
Orthorhombic DFT bands. Markers: Orthorhombic band
unfolding onto the cubic unit cell, the spectral weight is propor-
tional to the marker size.

FIG. 3. ARPES intensity as a function of energy and parallel
momentum showing the VBM along the Γ̄ − M̄ − Γ̄ direction.
The fitted band maxima are indicated as blue points. Cyan curve:
Parabolic band fitted around the band maximum.
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and hole effective masses, which appears justified by our
DFT calculations.
The effective mass calculated at the HSE level of theory

for the orthorhombic phase (m0 ¼ 0.17me) is compared
to mexp in Fig. 4(a). Theory substantially underestimates
mexp, with an experimental mass enhancement of ≈50%.
Theoretical studies indicate an increase of the calculated
effective mass for an increase of the computed band gap
[11–13]: we studied the band gap and effective mass
evolution in the orthorhombic phase using a PBE-based
hybrid functional with increasing amounts of Fock
exchange. In no circumstances, even by large overestimates
of the band gap, do we observe a deviation of the effective
mass larger than 10% [30]. To assess the performance of the
HSE functional, we includedG0W0 corrections to the cubic
phase of the material. Our results compare well with
previous studies [8,67] and a comparison between HSE
and G0W0 effective masses shows minor changes (≈14%),
indicating that the hybrid HSE functional gives a good
description of the band structure [30]. Thermal lattice
fluctuations can modify the average electronic properties
of LHPs [68]. We calculate the effective mass change and
the Rashba spin splitting upon lattice distortion along the
phonon modes and conclude that these have low impact on
the orthorhombic phase of CsPbBr3 [30]. A small Rashba
parameter of 0.05 eVÅ is reported for CsPbBr3 [69],
which cannot induce an observable modification of the
dispersion at room temperature [30]. These findings seem
to rule out electronic correlations and thermal fluctuations
as the main reasons for the mass renormalization observed.

An important mechanism, not accounted for by the DFT
calculations and relevant for polar materials, is the inter-
action between the photogenerated hole and longitudinal
optical phonons. ARPES is sensitive to many-body inter-
actions, encoded in the single particle spectral function
[70]. In particular, for polaronic systems, such interactions
manifest themselves as a renormalization of the bare band
dispersion and with the appearance of satellite peaks in the
photoemission spectrum [71,72]. The satellites appear on
the low-energy side of the main quasiparticle peak, at an
energy separation corresponding to the relevant longi-
tudinal optical (LO) phonon mode. In CsPbBr3 optical
phonons have energies ≤ 25 meV [73,74], and replicas
cannot be resolved within the experimental linewidth. In
contrast, our analysis of the quasiparticle dispersion cap-
tures the effective mass renormalization, which we attribute
to electron-phonon interaction.
This interpretation is supported by recent theoretical

predictions for CsPbBr3 and related compounds, e.g.,
MAPbI3, which exhibits the same lattice structure and a
similar phase diagram. Simulations of the electron-phonon
interaction in MAPbI3 predict a mass enhancement of
≈30%, where the interaction is dominated by coupling with
longitudinal optical phonon modes, the most important
being the Pb-I stretching and bending modes, and the
librational-translational modes of the methylammonium
cation [45]. In the fully inorganic compound, where the
latter modes are absent, simulations by Miyata et al. [15]
show that the largest structural relaxation occurs on the
Pb-Br bond distance and on the Pb-Br-Pb bond angle,
resulting in a reduction of the canting angle of the PbBr6
octahedra towards the undistorted cubic lattice.
To validate this picture, we estimated the Fröhlich

electron-phonon interaction, following a method recently
developed for polar semiconductors [45,59]. The Fröhlich
vertex, which represents the matrix element for electron
scattering by long-wavelength longitudinal optical pho-
nons, can be written [58,59] as

gνðqÞ ¼ −i
4πe2

Ω

X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2Mkωqν

s
q̂·Z�

k·ekνðqÞ
q̂·ε∞·q̂

ð1Þ

where e is the electron charge, Ω is the volume of the unit
cell,Mk the mass of the atom k, Z�

k the Born effective charge
tensor, ε∞ the high-frequency dielectric tensor, and ωqν and
ekνðqÞ the eigenvalue and eigenvector associated with the
mode ν of momentum q. We computed the material’s
dielectric function, reported in Fig. 4(b), starting from
ab initio calculations of the phonon band structure of
orthorhombic CsPbBr3 [30]. To assess the relative impor-
tance of the different phononic contributions in our calcu-
lations, the energy density of coupling dðg2Þ=dω [30] is
plotted as a function of phonon energy in Fig. 4(c). The
coupling is dominated by a maximum at an effective energy
of ℏω̃LO ¼ 18.2 meV, in the energy region of Pb-Br

(a) (c)

(b)

FIG. 4. (a) Comparison between the experimental dispersion
(mexp, cyan line, the shaded area indicates the experimental
uncertainty) and the theoretical effective massm0 computed from
theory (black dot-dashed line). The renormalized mass including
electron-phonon interaction mpol is plotted in red. (b) Computed
dielectric function, real (blue line) and imaginary (red line) part
are shown on the left-hand axis; the loss function −Imð1=ϵÞ is
plotted on the right-hand axis. (c) Logarithmic plot of the density
of coupling dðg2Þ=dω to optical phonons [30], the shaded area
indicates the integration region for determining the coupling
constant g2LO. dðg2Þ=dω was broadened by convolution with a
Gaussian function (1.2 meV FWHM) for clarity.
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stretching modes [13,15]. The effective electron-phonon
coupling to such modes is obtained integrating dðg2Þ=dω
from 12 to 25 meV [see Fig. 4(b)], resulting in
g̃2LO ¼ 3.34 × 10−5 eV2=Å−2. Our calculation reveals that
the coupling to the Pb-Br stretching modes is 2 orders of
magnitude stronger compared to modes appearing in the
energy range between 2 and 13 meV in Fig. 4(c), which
can be associated with coupled stretching-bending modes of
Pb-Br [15].
Following these calculations, we proceed to estimate the

mass renormalization from the Fröhlich model [57], valid
for a parabolic band dispersion and coupling to a single
dispersionless LO phonon mode. In this limit, it can be
shown that the coupling matrix elements gνðqÞ reduce to
the well-known Fröhlich coupling matrix elements [59].
The dimensionless Fröhlich coupling parameter, α, can be
expressed in terms of the ab initio effective coupling
strength g̃2LO as

α ¼ Ω
4πe2

g̃2LO
ðℏω̃LOÞ2

�
2m0ω̃LO

ℏ

�
1=2

; ð2Þ

withm0 the bare effective mass. We obtain α ¼ 1.81, which
fall into the weak to intermediate coupling regime. In this
regime, the Feynman polaron model provides a good
approximation for the quasiparticle mass [45,75,76]:

mpol ¼ m0

�
1þ α

6
þ 0.025α2 þ � � �

�
: ð3Þ

Here mpol is the renormalized polaron mass, and m0 is the
bare quasiparticle mass extracted from our DFT calcula-
tions. The resulting mpol ¼ 0.24me is compared to the
experimental result in Fig. 4. The result, in agreement with
experiment within the experimental uncertainty, indicates
that our model captures the main physics behind the hole
quasiparticle dressing. Within the Feynman model, it is also
possible to estimate the polaron binding energy and radius
to be 34 meV and 58 Å, respectively. Thus, the polaron
resulting from an excess hole in CsPbBr3 single crystals is
large, extending over several lattice unit cells. We note that
these simple estimates of polaronic radius and binding
energy could be refined by a recently developed polaron
model, capable of computing the polaron wave function
ab initio [77]. Interestingly, in the case of CsPbBr3 nano-
crystals, signatures of hole self-trapping were reported [78],
suggesting that the electron-phonon interaction in LHPs’
nanostructures may be altered [79,80]. The adopted theo-
retical method can be readily generalized to multiple
coupled LO phonon modes [45], as in the case of hybrid
organic-inorganic LHPs. Therefore, we expect it to be
capable of predicting the carrier effective masses in the
whole family of LHPs.
In conclusion, our work provides the first experimental

reference for the momentum-resolved electronic structure

of CsPbBr3 in the orthorhombic phase. Fits of the elec-
tronic dispersion provide an experimental value for the
effective mass mexp ¼ 0.26� 0.02me, which we found
to exceed the theoretical result of m0 ¼ 0.17me. The
observed mass renormalization is ascribed to electron-
phonon interaction dominated by Pb-Br stretching modes,
responsible for the formation of large Fröhlich polarons.
Ab initio electron-phonon coupling calculations are in
quantitative agreement with the experiment, demonstrating
that the employed theoretical method can correctly predict
the carrier effective mass of LHPs from first principles. Our
findings provide direct experimental evidence in the elec-
tronic structure that charge carriers in single-crystalline
LHPs form large polarons and that the corresponding
modification to the microscopic scattering rates must be
taken into account to explain the exceptional transport
properties of LHPs.
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G. Prandini, P. Bonfà, M. O. Atambo, F. Affinito, M.
Palummo, A. Molina-Sánchez, C. Hogan, M. Grüning,
D. Varsano, and A. Marini, Many-body perturbation theory
calculations using the yambo code, J. Phys. Condens.
Matter 31, 325902 (2019).

[38] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D.
Vanderbilt, Maximally localized Wannier functions: Theory
and applications, Rev. Mod. Phys. 84, 1419 (2012).

[39] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt,
and N. Marzari, wannier90: A tool for obtaining maximally-
localised Wannier functions, Comput. Phys. Commun. 178,
685 (2008).

[40] A. A. Mostofi, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D.
Vanderbilt, andN.Marzari,Anupdated version ofwannier90:
A tool for obtaining maximally-localised Wannier functions,
Comput. Phys. Commun. 185, 2309 (2014).

[41] J. B. Hoffman, A. L. Schleper, and P. V. Kamat, Trans-
formation of sintered CsPbBr3 nanocrystals to cubic CsPbI3
and gradient CsPbBrxI3−x through halide exchange, J. Am.
Chem. Soc. 138, 8603 (2016).

[42] J. P. Perdew, M. Ernzerhof, and K. Burke, Rationale for
mixing exact exchange with density functional approxima-
tions, J. Chem. Phys. 105, 9982 (1996).

[43] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi,
Phonons and related crystal properties from density-
functional perturbation theory, Rev. Mod. Phys. 73, 515
(2001).

[44] X. Gonze and C. Lee, Dynamical matrices, Born effective
charges, dielectric permittivity tensors, and interatomic
force constants from density-functional perturbation theory,
Phys. Rev. B 55, 10355 (1997).
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