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We present a quantum electronic embedding method derived from the exact factorization approach
to calculate static properties of a many-electron system. The method is exact in principle but the practical
power lies in utilizing input from a low-level calculation on the entire system in a high-level
method computed on a small fragment, as in other embedding methods. Here, the exact factorization
approach defines an embedding Hamiltonian on the fragment. Various Hubbard models demonstrate that
remarkably accurate ground-state energies are obtained over the full range of weak to strongly correlated
systems.
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The computational challenge of performing a quantum
calculation of a complex many-body system remains a
primary research area in condensed matter physics and
quantum chemistry. Density functional theory (DFT) is
often turned to, due to its favorable system-size scaling,
however limitations of available functional approximations
deem it inaccurate for strongly correlated systems. When
even DFT gets too expensive for a system of more than a
thousand atoms or so, a collection of DFT calculations on
subsystems with functionals modified by couplings to the
rest of the system can be used [1–4]; however, such an
approach remains inadequate for problems involving strong
correlation. Instead, one approach in recent years has been
to use a quantum embedding method where the full system
is described as an ensemble of two or more fragments:
On the one hand, when the fragments are chosen to be
weakly interacting with each other, the essential idea is that
properties of the total system can be obtained by a high
level calculation on one modified by input from the other.
This can be particularly useful when only part of the system
is actually of interest, or is strongly correlated, but such that
its environment affects its behavior, and the idea is to
calculate accurately properties of the system of interest
without having to compute the full problem accurately. On
the other hand, when the entire system is of interest and
requires a better description of correlation than provided by
density functional approximations, GW [5], and the like,
then the high-level calculation can be done successively on
different fragments in a self-consistent way, to get a full
description of the entire system from several smaller
calculations. Several different approaches have been devel-
oped in recent decades; ranging from the basic embedding
variable being the Green’s function [6,7] or directly the
self-energy [8], to the density-matrix [9–11] or density
[12], as well as density-functional based embeddings [13].
Here, we develop a novel embedding method based on

the exact factorization (EF) approach. EF separates the

wave function into a single correlated product of a marginal
and a conditional wave function [14–19]. Most of the
previous EF work focused on separating the electronic from
the nuclear part of a molecular wave function, providing an
“exactification” of the Born-Oppenheimer (BO) approxima-
tion: ΨðR1;R2::; r1; r2::Þ ¼ χðR1; ::ÞΦR1;::ðr1; ::Þ, where
the marginal χðR1; ::Þ is the nuclear wave function and
ΦR1;::ðr1; ::Þ the electronic part parametrized by nuclear
coordinates. This approach has given insight into the
effects of electronic-nuclear coupling on dynamics (e.g.,
Refs. [19,20]) and yielded practical nonadiabatic quantum-
classical methods [21–27]. There have been generalizations
in several directions; most notably for the present purposes
are the exact single-active electron approach arising from
factorizing a purely electronic wave function into a
one-electronmarginal and the rest [16,28,29], and the formal
generalization to arbitrary many-body non-real-space
Hamiltonians [30].
The present work extends EF to a completely new class

of applications. In our embedding via the exact factoriza-
tion (EVEF), we factorize the full electronic wave function
in Fock space. The idea is to solve the full system with a
low-level calculation [e.g., Hartree-Fock (HF)], and use the
solution to generate an approximate Hamiltonian for the
marginal corresponding to a fragment which is then solved
with a high-level method (e.g., exact diagonalization). The
fragment is a chosen set of single-particle orbitals in the
basis defining the Fock space, e.g., selected to be the more
strongly correlated orbitals in the one-electron Hilbert
space. We present three levels of EVEF, each increasingly
refined. The results on different Hubbard systems show that
EVEF is able to capture the range from weak to strong
correlation in an efficient and accurate way.
The Fock space electronic wave function in a space

of M single-particle orbitals, Ψðn1…nMÞ, is defined via
jΨi ¼ P

ni¼f0;1gΨðn1…nMÞjn1…nMi, where jn1…nMi
represents a single Slater determinant with ni ¼ 0 or 1
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representing the occupation of spin-orbital i. Choosing
the first K spin orbitals to span the fragment space, the
factorization reads

Ψðn1; n2; ::nK|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n

; nKþ1; ::nM|fflfflfflfflfflffl{zfflfflfflfflfflffl}
m

Þ ¼ χðnÞΦnðmÞ; ð1Þ

where the marginal wave function χðnÞ is a function of the
fragment configuration and ΦnðmÞ is the conditional part.
The factorization is unique up to an n-dependent phase,
FðnÞ, that represents a gauge freedom, provided the partial
normalization condition (PNC),

X
m

Φ�
nðmÞΦnðmÞ ¼ 1; ð2Þ

is satisfied, adapting the proof of Refs. [17,19]. Then, it

follows that χðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

mj¼0;1 jΨðn;mÞj2
q

× ðeiFðnÞÞ (with
mj going over K þ 1 to M spin orbitals). EF usually
proceeds by finding a coupled set of equations for the
marginal and conditional factors, which contain terms that
exactly account for coupling of the two subsystems.
However, at this point we deviate from what is usually
done in EF: here, we find an equation for χ that emulates
the effect of Φn without ever having to solve the numeri-
cally challenging nonlinear and non-Hermitian equation for
the conditional factor [30,31].
To obtain the equation for χðnÞ, consider first the

Schrödinger equation for Ψ, which involves the full exact
Hamiltonian Ĥ:

X
n0;m0

Hn;m;n0;m0Ψðn0; m0Þ ¼ EΨðn;mÞ; ð3Þ

where Hn;m;n0;m0 ¼ hn;mjĤjn0; m0i. Inserting the factorized
form Eq. (1), multiplying on the left by Φ�

nðmÞ, and
summing over m gives our eigenproblem for χðnÞ:

X
n0
hn;n0χðn0Þ ¼ EχðnÞ; ð4Þ

where we have used the PNC Eq. (2) on the right-hand side,
and identified the embedded Hamiltonian

hn;n0 ≡
X
m0;m

Φ�
nðmÞHn;m;n0;m0Φn0 ðm0Þ: ð5Þ

So far, everything is exact, and E could be any eigenvalue of
the full Hamiltonian; it need not be the ground-state energy.
If it was possible to somehow obtain this embedded
Hamiltonian exactly, then the exact ground-state energy of
the full system could be obtained by solving the eigenpro-
blem Eq. (4) in the small Hilbert space of just the fragment,
regardless of how small it is, even for a single-orbital

fragment. Further, if we could somehow obtain the embedded
observable, on;n0 ¼

P
m0;mΦ�

nðmÞOn;m;n0;m0Φn0 ðm0Þ, for any
many-body operator on the full system Ô, then the solution of
Eq. (4) yields the expectation value of Ô,
through hΨjÔjΨi ¼ P

n;n0χ
�ðnÞon;n0χðn0Þ.

Finding the exact embedded Hamiltonian Eq. (5) is of
course as hard as solving the original problem. The
practical power of this set-up depends on making an
approximation, so this enters in the first step in EVEF.
We first solve the HF Hamiltonian ĤMF for the whole
system to obtain the HF state:

jΨMFi ¼
Y
j

�X
i

Ci;jâ
†
i

�
j i; ð6Þ

where â†i is the creation operator in a given single-particle
basis (e.g., the site basis in lattice models), and j i is the
vacuum state. In the second step, the embedded Hamiltonian
Eq. (5) is computed using ΦMF

n ðmÞ ¼ ΨMFðn;mÞ=χMFðnÞ.
For configurations k, where χMFðkÞ ¼ 0, ΦMF

k ðmÞ becomes
ill defined and is set to zero. Using the resulting mean-field-
derived embedded Hamiltonian to solve Eq. (4) exactly or
with a high-level method gives us directly an approximation
for the total energy. In the Supplemental Material [32],
we rewrite the formalism in a second quantization which
allows us to compute the embedded Hamiltonian using
Wick’s theorem.
The two steps above describe the central approach of this

Letter and it is what we call EVEF-1. It can be recast as the
minimization problem:

E ≈ min
χ;jjχjj¼1

X
n0;m0;n;m

χ�ðnÞΦMF
n ðmÞHn;m;n0;m0ΦMF

n0 ðm0Þχðn0Þ;

ð7Þ

with ΦMF kept fixed. After minimization, the resulting
wave function χðnÞΦMF

n ðmÞ is typically not a single Slater
determinant, that is, the procedure introduces some corre-
lation, and the resulting energy lies between the mean-field
result and the exact energy.
EVEF-1 is most effective in giving a significant energy

correction when, for most fragment configurations, χMFðnÞ
are nonzero. This can be understood from realizing that
configurations k for which χMFðkÞ ¼ 0 do not contribute to
the computation of the energy, since the zeroing of the
corresponding conditional part results in hk;n ¼ hn;k ¼ 0.
An extreme case would be if EF is performed in the basis of
HF orbitals. In this case χMFðnÞ is zero for all n except for
the one corresponding to the configuration of occupied
orbitals and the matrix hn;n0 reduces to a 1 × 1 matrix equal
to the HF energy. In contrast, EVEF-1 is very effective in a
case where χMFðnÞ has a similar amplitude for every n, and
n are chosen such that there is strong correlation between
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the orbitals of the fragment while the environment-
fragment interaction is mean-field-like.
In rare cases, however, the choice of fragment leads to

χMFðnÞ ¼ 0 for a large fraction of configurations. It could
even be possible that if the full system is treated as the
fragment, EVEF-1 will not reproduce the exact energy,
because of the zeroing of the conditional wave function for
configurations where ΨMFðn;mÞ ¼ 0. This implies that
jΨMFi is a bad starting point and a higher-level approach for
the initial full wave function is needed. A pedagogical
illustration of the effects of the choice of the fragment is
given in the Supplemental Material [32].
EVEF-1 is expected to work well when only one sub-

system (chosen as fragment) is strongly correlated while the
rest is well described by a mean field. In the case of strong
correlation throughout, we instead partition the system as an
ensemble ofNf nonoverlapping fragments, each of which is
computed with a high-level method using an embedded
Hamiltonian generated from HF, and combine the results.
We describe this method, EVEF-2, next.
In an exact calculation, each and any fragment would

correspond to a different embedded Hamiltonian in Eq. (4),
denoted now ĥα, where α labels the fragment, yet each
would yield the same eigenvalue E, the total energy of the
system. However, with an approximate Ψ, each fragment
gives a different answer for the energy. Moreover, in any
fragment calculation, some contributions to the matrix
elements of ĥα yield no new correlations beyond HF. To
see this, consider a Hamiltonian of the form

Ĥ ¼
X
i;j

tijâ
†
i âj þ

X
i;j;k;l

wijklâ
†
i â

†
j âkâl; ð8Þ

where wijkl ¼ hijjŴjlki. If none of i, j, k, l are contained in
fragment α, that term contributes only to the diagonal of ĥα
and has no corrections to its HF value, but it does yield
nontrivial correlations in other fragments. This suggests
that a better approach would be to extract, for each
fragment, only the part of the energy altered by the
high-level method, and then sum this over fragments.
That is, we partition the full Hamiltonian as a sum of
fragment contributions, Ĥ ¼ P

α Ĥ
loc
α , where Ĥloc

α is “local,”
defined by

Ĥloc
α ¼

X
i∈α;j

tijâ
†
i âj þ

X
i∈α;j;k;l

wijklâ
†
i â

†
j âkâl; ð9Þ

where only terms with the first index inside the fragment
are included. We then define a local embedded matrix hlocα

for a fragment α in an environment consisting of the other
ðNf − 1Þ fragments:

hlocα;nα;n
0
α
¼

X
m0

α;mα

Φ�
α;nα

ðmαÞHloc
α;nα;mα;n

0
α;m

0
α
Φα;n0αðm0

αÞ; ð10Þ

[which is similar in spirit to the density-matrix embedding
theory (DMET) fragment energy defined in Ref. [10] ].

The total energy is obtained by first computing the energy
of each fragment α using χα, where χα is the solution of
Eq. (4) with hα on the left, and then summing over all the
fragments:

E ¼
XNf

α

Eα with Eα ¼ χ†αhlocα χα: ð11Þ

In the case no approximation is made for hα or hlocα , this
energy is exact and equal to the E appearing in Eq. (4). One
can partition any many-body observable Ô in the same way
as a sum of Ôloc

α , embedding it analogously to Eq. (10),
i.e., hΨjÔjΨi ¼ P

α χ
†
αolocα χα.

Of course, in practice, an approximation is used, and the
steps then for EVEF-2 are as follows: First, as in EVEF-1,
the HF problem for the whole system is solved yielding
Eq. (6), and for each fragment χHFα is computed in terms of
Ci;j in the same way. In the second step, for each fragment,
the embedded Hamiltonian hα is computed from Eq. (5)
using ΦMF

α and the full Ĥ, and Eq. (4) is solved for each
fragment α: hαχα ¼ Ẽχα to find χα. Third, the local matrix
hlocα is formed using jΨMFi in Eq. (10), and the fragment
energy Eα and total energy are computed from Eq. (11).
Unlike EVEF-1 however, EVEF-2 does not provide a wave
function for the whole system and is not variational, so,
like in DMET and dynamical mean field theory (DMFT),
the EVEF-2 energy may fall below the exact ground-state
energy.
A refinement of EVEF-2 follows from introducing a self-

consistency criterium and modifying the mean field with
a local or nonlocal potential to fit an observable in each
fragment. This is in a similar spirit to what is done in
DMET and DMFT. Here, in EVEF-3, we consider fitting
the orbital occupation. The procedure follows that of
EVEF-2, but at the end of the second step we include a
chemical potential on the fragment orbitals μj, j ∈ α to
minimize jjnj − nMF

j jj2, where nj is the average occupation
of orbital j that can be directly obtained from χðnÞ using
nj ¼

P
ni¼f0;1g
ni≠nj

jχðnÞj2. We then iterate the first two steps

until convergence is obtained.
To test our approach, we computed the energy in

different Hubbard systems, with a general Hamiltonian

Ĥ ¼ −
X
hiji;σ

tijâ
†
i;σâj;σ þ

X
i

Uin̂i;↑n̂i;↓: ð12Þ

There is no local potential but the on-site repulsion may be
site dependent. We set the gauge freedom FðnÞ to zero, but
a few tests with a different choice showed no difference
here. All units are arbitrary.
Our first system is a molecule represented by the

Hubbard tetramer depicted in the inset in Fig. 1, with a
variable on-site repulsion U on two of the sites, while the
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other two sites are weakly interacting with a fixedU0 ¼ 0.1.
Results of EVEF-1 and EVEF-2 for the total energy E as a
function of U are shown in Fig. 1.
Consider first the left panel that corresponds to the

calculation using unrestricted HF (UHF) for ΨMF. The
exact curve (black solid) is indistinguishable from HF at
small U since the total correlation is small, and it saturates
around U ≈ 5, becoming nearly constant with E ¼ −1.5.
UHF (blue dash-dotted) follows the same trend but satu-
rates later and at higher energy, around E ¼ −1.38.
The green dashed curve is the result from EVEF-1 with

the natural choice of fragment being the two sites with local
repulsion U. This gives a dramatic improvement over UHF
for intermediate and strong correlations U. One can also
make the counterintuitive choice to treat the U0 part at
higher level in the bath of the U sites (orange dotted line).
Interestingly, this also considerably improves the energy at
large U even though the correlation is almost entirely in the
two sites that are not treated at the higher level. The effect
ofU is partially contained in the definition of the embedded
Hamiltonian h and the ensuing diagonalization brings back
some of the correlation.
The two previous fragment calculations can also be used

as partition for EVEF-2 [gray rectangles in the inset of
Fig. 1]. Doing so gives a remarkably accurate energy (the
violet solid curve), which is almost on top of the exact
result. Another possibility is to treat each site as an
independent fragment as a 4 × 1 partition for EVEF-2.
This is the solid red curve, very close to the violet and black
ones (but slightly worse around U ¼ 5).
The right panel of Fig. 1 instead takes ΨMF as restricted

HF (RHF). In this case all EVEF (1,2,3) approaches are
equivalent and, although a huge improvement over RHF is
obtained especially at large U, they generate the same
energy, lying between the exact and RHF results. The HF
determinant in RHF provides a χHFðnÞwhich is zero for too
many configurations n (see earlier discussion) that are
significant for the exact χ. The Hilbert space in which h is

actually diagonalized is too small and is the limiting factor
for improvement of the energy.
Our next model system is the uniform 100-site Hubbard

ring with t ¼ 1=2 and the same U on each site. We
calculate the energy from EVEF as a function of filling
fraction n per site for different values ofU ¼ 1, 4, 8, 20 and
compare with the Bethe-Ansatz solution for an infinite
chain [33] as a reference.
The results shown in Fig. 2 are from EVEF-3 using RHF

as the mean field. We found that without a chemical
potential (as in EVEF-2), the number of electrons in the
fragment turned out unphysical; for example, as n → 0, the
average number of electrons in the fragment did not go to
zero. The left panel takes the fragments to have one site
while the middle panel has two-site fragments. Because of
the homogeneity of the system, only one fragment calcu-
lation (one hloc) needs to be done and only one chemical
potential μ is needed.
In both cases, EVEF-3 produces very good results for

small and intermediate U, but is increasingly worse at
larger U for the 1-site fragment. The 2-site fragment
calculation greatly improves the energy, making the curve
very close to the exact one even for very strong interaction
strengthsU. The worst results are obtained when approach-
ing n ¼ 1 where both the derivative and the value of the
energy are overestimated.
As another observable, we display, in the third panel, the

double occupation in the site basis, hn̂i↑n̂i↓i. This is directly
available from χ, e.g., as hn̂i↑n̂i↓i ¼ jχð1; 1Þj2 when using a
1-site fragment. For intermediate filling n, both 1-site and
2-site fragments generate almost the exact result; the 1-site
fragment calculation is even better for this observable than
it is for the total energy. The EVEF error is greater at half
filling n ¼ 1, consistent with the larger energy error at this n.
In comparison with DMET calculations for this system

(Figs 1 and 2 of Ref. [9]), a similar deviation is seen.
In fact, while DMET performs better for the energy
but worse for double occupation than 1-site fragment

FIG. 1. Hubbard tetramer, sketched in the inset. We take
t ¼ 1=2, U0 ¼ 0.1, and U as variable. Total energy E as a
function of U, for a UHF full-system calculation (left) and RHF
(right), using EVEF-1 or EVEF-2 with fragments as indicated in
the legend.

FIG. 2. Energy per site as a function of the occupation per site n
in a Hubbard ring of 100 sites for U values indicated. Left panel
shows exact (solid) and EVEF-3 using 1-site fragment (dash-
dotted), middle panel uses the 2-site fragment (dash-dotted). The
right panel shows double occupation hn̂i↑n̂i↓i as a function of the
ratioU=t for the three different n indicated; exact (solid), EVEF-3
with 1-site fragment (dotted), and 2-site fragment (dash-dotted).
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EVEF, EVEF appears to outperform DMET for the 2-site
fragment at larger U. Since the n-site fragment calculation
in DMET requires the high-level calculation in a 2n-site
Hilbert space, one could argue that the EVEF 2-site
fragment calculation should be compared against the
1-site DMET one, and in such a comparison the errors
in EVEF are much less. Calculations for a larger fragment
size will likely improve the results further and are left for
future work.
In summary, we have derived a practical embedding

method from the EF approach, establishing a new class of
applications for the EF idea. We proposed three levels of
refinement, EVEF-1, -2, and -3. The formalism is general
enough to be applied directly to any quantum system; for
example, to study molecular dissociation, metal-insulator
transitions, transition metal oxides, stripe or supercon-
ducting phases, and through projection, any fragment
observable could in theory be obtained. The method
produces results that are quantitatively good when tested
on different Hubbard systems: a tetramer and a uniform
ring, for the full range from weak to strong correlation.
The accuracy is comparable to other embedding methods
like DMET, and in some cases better, but the Hilbert space
of the fragment in our approach is smaller. As in DMET,
EVEF is based on a wave function rather than the Green’s
function that DMFTand self-energy embedding theory are
based on, and this may have practical advantages due to
using a frequency-independent quantity. Unlike DMET,
the single product form of our wave function enables us to
bypass the embedding basis which offers possible further
numerical advantage, and it can be straightforwardly
applied with approximate wave functions beyond Slater
determinants. One advantage of EVEF is its flexibility as
it can be used with any method that provides the expect-
ation values needed in the definition of h, and further, it
can be directly extended to excited states. One question
that needs to be addressed is whether the nonvariational
aspect of EVEF-2 and -3 is serious enough in practice to
impede their use. A detailed comparison with other
methods and molecular or solid-state systems is left for
future work, as are improvements and extensions, such as
improving the stability of the self-consistency loop in
EVEF-3, choosing different observables to match between
the HF and fragment calculations, application to excited
states, and a real-time extension via a time-dependent
variational principle.
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Note added.—Recently, we became aware of work by
Requist and Gross [34] developing a similar EF-based
embedding method.
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