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We analyze the experimental particle current autocorrelation function of suspensions of hard spheres.
Interactions between the particles are mediated by thermally activated acoustic excitations in the solvent.
Those acoustic modes are tantamount to the system’s (energy) microstates and by their orthogonality, each
of those modes can be identified with an independent Brownian particle current. Accordingly, partitioning
of the system’s energy states is impressed on the current autocorrelation function. This impression provides
a novel measure of the entropy and location of a partitioning or entropy limit at a packing fraction that
coincides with that of the observed suspension’s first order freezing transition.
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Introduction.—A system of particles with hard sphere
interactions has proved to be a valuable reference that has
enhanced considerably our understanding of condensed
matter. Its first order freezing-melting transition, in par-
ticular, has been studied extensively. It was first discovered
by computer simulation in 1957 [1,2]. In 1964 its location
was quantified, again by computer simulations that found
the packing fractions ϕ of the coexisting phases of the hard
sphere fluid and crystal to be ϕf ¼ 0.494 and ϕm ¼ 0.545
[3]. Just over 20 years later experiment showed that these
phase equilibria are replicated by suspensions of (colloidal)
particles stabilized against coagulation by thin steric sur-
face coatings [4]. In the absence of direct, finite range
interactions among the particles the transition, expressed in
thermodynamic terms, occurs when the entropy associated
with the particles’ free volume in the crystal exceeds the
configurational entropy of the fluid [5–7].
Statistical thermodynamics is underpinned by partition-

ing of energy; a concept which naturally also applies to the
phase equilibria. Ergo, the description of the transition must
ultimately be underpinned by the manner of energy
partitioning in the respective phases, in which terms the
above statement reads as follows: the fluid to crystal
transition occurs when the number of distinct accessible
energy states, or microstates, of the crystal exceeds that of
the fluid. In formation of the crystal phase the increase in
entropy is self-evident; here the (excess) entropy resides in
the countable lattice modes. Moreover, as is clear from
numerous studies of crystallization kinetics of suspensions
of hard spheres, for instance, development of lattice modes
by whatever combination of nucleation and growth is
accompanied by an increase in the particles’ free volume
[8–10]; here the connection between entropy and free
volume is evident. While compression of the hard sphere

fluid necessarily leads to loss of configurational entropy, it
is less transparent how that loss is related to, or results from,
a corresponding reduction in accessible energy states. The
aim of this Letter is to quantify that connection and explore
its consequences.
We recognize that the freezing transition is basically

structural in nature and independent of whether the intrinsic
particle dynamics are ballistic or diffusive. However, in
the case of a suspension of sufficiently large particles,
fluctuations in their spatial configurations are vastly slower
than energy exchanges among those particles. As a result,
the signatures of energy partitioning turn out to be more
transparent than in molecular fluids. The first simplifi-
cation admitted by the separation of timescales, expressed
by the Fokker-Planck equation [11–14], treats the sus-
pending liquid (solvent) as a fluctuating hydrodynamic
continuum—a momentum field, comprising propagating,
longitudinal (sound) and diffusing, transverse (viscous
flow) components. We consider just the acoustic modes
for only these effect energy exchanges between the
particles and, in the statistical thermodynamics description
of this system, only these determine the partition function
of the system. The next simplification considers these
exchanges instantaneous on the timescales (τ ≳ 10−6 s) on
which particle motions are observed in conventional optical
experiments, spectroscopic or microscopic [11,15]. On the
sonic timescale (τsonic ∼ 10−10 s)—the time for sound to
propagate typical distances between the particles—the
particles are effectively stationary and the “instantaneous,”
ensemble average of their spatial distribution, expressed by
the structure factor SðqÞ, furnishes the fixed, reflecting
boundary conditions that determine the frequencies of the
sound modes; SðqÞ effects partitioning of the acoustic
modes in the (interstitial) solvent. In other words, the
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“snapshot” of the ensemble of particle positions effectively
constitute a resonating acoustic box whose boundaries,
however convoluted, determine (I) the number N of normal
orthogonal—distinct and independent acoustic modes and,
(II) the spatial distribution of those modes by their being
pinned to the ensemble-averaged distribution of the par-
ticles and extent of their exclusion from the space occupied
by the particles. Note, in particular, that (I), the number of
acoustic modes which, in this case, is tantamount to
the number of microstates, is independent of the spatial
frequency q.
On experimental times these rapidly fluctuating, but

deterministic, acoustic excitations are “visible” as
Brownian motion and manifest in the time correlation
functions of various randomly fluctuating quantities. The
present study rests on the longitudinal current autocorre-
lation function (CAF), which property provides a more
direct link to the energy exchanges between the particles
than the more usually studied correlation function of the
particle number density [11]. This is evident from previous
observations that the CAF admits to a timescaling [16,17]
that leaves the result independent of q. This presents the
first indication of a connection between the scaled CAF and
contribution (I) above: a connection with the number N of
microstates of the system—or, in other words, the entropy,
S ∼ lnðNÞ. Analysis below aims to render this connection
more rigorous by identifying in the CAF conservation of
energy and denumerability of the microstates.
In singling out just the longitudinal momentum current

in our approach, we have stopped short of presuming that
all momenta have relaxed to equilibrium. While this level
of coarse graining, expressed by the Smoluchowski equa-
tion, is more commonly adopted in studies of the dynamics
of suspensions [11–14,16], its drawback is that it precludes
distinguishing the separate roles of the longitudinal and
transverse momentum currents and, thereby, negating any
possibility of identifying energy partitioning in the time
correlation functions, which we aim to achieve here.
Methods.—The results comprise CAFs derived from

dynamic light scattering measurements on experimentally
established hard sphere–like model systems; suspensions of
polymer particles, labeled P [18], and microgel particles,
M1 and M2 [17]. The samples’ packing fractions φ are
determined by referencing the observed equilibrium col-
loidal fluid-crystal phase separation, in each case, to that of

the ideal hard sphere system [4,19,20]. Accordingly, the
freezing value is set at ϕf ¼ 0.494. Properties of the
particles immediately relevant for the present study are
summarized in Table I. Other properties of the suspensions
and light scattering procedures are documented elsewhere
[10,18,19]. In the results presented below the spatial
frequency q and all lengths are expressed in terms of the
particle radius R (Table I).
As mentioned in the Introduction, we consider the

timescaled time correlation function

C�ðq; τ�Þ ¼ −d2fðq; τ�Þ=dτ�2
¼ q2hjðq; 0Þj†ðq; τ�Þi=hjρðqÞj2i ð1Þ

of the longitudinal particle current density [21],

jðq; tÞ ¼ N−1 XN
k¼1

q̂ ·vkðtÞ exp½−iq · rkðtÞ�: ð2Þ

This has been derived by numerically differentiating the
measured correlation function,

fðq; τ�Þ ¼ hρðq; 0Þρ†ðq; τ�Þi=hjρðqÞj2i; ð3Þ

of the particle concentration ρ(t). The dagger † indicates the
complex conjugate and q̂ ¼ q=q is the unit propagation
vector. The delay time τ usually expressed in terms of the
Brownian time τB (Table I), is further scaled here by the
time, 1=q2DðqÞ, that characterizes the diffusive decay of
concentration fluctuations of spatial frequency q; i.e.,

τ� ¼ q2DðqÞτ: ð4Þ

Here, DðqÞ ¼ D0HðqÞ=SðqÞ denotes the short-time
diffusion coefficient and HðqÞ the hydrodynamic fac-
tor [11].
Results and analyses.—The results of experiments on the

three suspensions (Table I) are quantitatively consistent
regardless of the differences in their chemical composition,
particle radii, and polydispersities. Since the timescaled
CAFs, C�ðq; τ�Þ, of P and M1 have been published
previously [16,17], it suffices to show just a representative
result, at ϕ ¼ 0.351, for suspension M2 in Fig. 1(a). This
illustrates the key feature, found for all packing fractions of

TABLE I. Suspension properties; Particle radii, polydispersities,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2=R2 − 1

p
and τB ¼ R2=ð6D0Þ, the time that

characterizes Brownian motion and D0 the diffusion coefficient of freely diffusing particles.

Suspension P Suspension M1 Suspension M2

Radius, R 185 nm 430 nm 370 nm
Polydispersity 8% 4% 2%
Brownian time τB 0.013 s. 0.175 s 0.111 s
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the three suspensions in the equilibrium fluid phase
(ϕ < ϕf), that C�ðq; τ�Þ shows no systematic variation
with q in the experimental windows of spatial frequency,
1≲ q≲ 5, that bracket the position qm of the primary
maximum in SðqÞ, and delay time, −1.5≲ log τ� ≲ 1.5
(outside this space-time window experimental noise pre-
cludes any inference). Absolute values are plotted because
Cðq; τ�Þ, being constrained by conservation of particle
number density, decays from below.
We proceed by repeating, in part, the analysis described

in Refs. [16,17]. First, we approximate the scaled CAFs, by
a stretched exponential (SE) function,

C�ðq; τ�Þ ¼ A exp½−ðτ�=τxÞγ�; ð5Þ

of the (scaled) delay time (Fig. 1). The fitting parameters in
Fig. 1(b) show that the amplitude A increases and the
characteristic decay time τx and stretching index γ decrease
with ϕ.
Second, A and τx are fitted to power laws

Aojϕa − ϕj−α and Tojϕb − ϕjβ; ð6Þ

respectively [Fig. 1(b)]. From the fit parameters, given
in Table II, one sees that in all cases ϕa and ϕb are
consistent, within experimental error, with the freezing
value ϕf ¼ 0.494.
In the third step in the analysis, not previously advanced,

the SE is expressed by a superposition of exponential
decays

exp½−ðτ�=τxÞγ� ¼
Z

gðτtÞ exp½−τ�=τt�dτt: ð7Þ

The moments of the distribution gðτtÞ of decay times are
defined by hτnt i ¼ τnxΓðn=γÞ=½γΓðnÞ� [ΓðyÞ is the Gamma
function] [22]. Whether the data support this decomposi-
tion is one of the main issues discussed below. In any
case, from the parameters τx and γ, we determine the
average decay time hτti the normalized spread σ ¼ ðhτ2t i−
hτti2Þ1=2=hτti, and skewness ζ ¼ ðhτ3t i − 3hτ2t ihτti þ
2hτti3Þ=σ3, shown in Fig. 2(a) for all three suspensions.
As is evident from the spread in the results, these derived
quantities suffer accumulation of the errors in τx and γ. So,
power laws were not fitted to the moments as was done for
A and τx in Fig. 1(b). Nonetheless, it is noteworthy that both
the spread and, in particular, the positive skewness increase
with ϕ.
Products Aτx and Ahτti are plotted in Fig. 2(b). Again,

errors notwithstanding, it is evident that Aτx decreases
appreciably with ϕ while Ahτti does not.
Although our focus is primarily on the thermodynami-

cally stable suspension (ϕ < ϕf), we point out that the
CAFs of the metastable suspension (ϕ > ϕf) differ. For this
case previous experiments [16,17,23] show deviations from
the above timescaling and the SE approximation for spatial
frequencies q ¼ q� around qm. However, for q ≠ q� scaling
still holds and, as far as experimental noise allows us to
determine, the parameters of the SE fitted to C�ðq ≠
q�; τ�;ϕ > ϕfÞ are the same as those of the SE fitted to

FIG. 1. (a) The scaled current correlator for suspension M2 for
values of q indicated. The best fitting SE, Eq. (5) (A ¼ 0.7,
τx ¼ 0.07, γ ¼ 0.44) cannot be distinguished from the data. To
illustrate the degree of stretching the basic exponential decay (SE
with γ ¼ 1) is shown by the red dashed curve. (b) Parameters A,
τx, and γ of the SE defined by Eq. (5). The vertical dashed line is
located at ϕf ¼ 0.494. The two dashed curves are power laws
A ¼ Aojϕa − ϕj−α (top) and τx ¼ Tojϕb − ϕjβ fitted to A and τx,
respectively. Fitting parameters are listed in Table II. The small
(black) horizontal bars at the right of the figure indicate average
values of the SE parameters fitted to C�ðq ≠ q�; τ�;ϕ > ϕfÞ. See
text for explanation.

TABLE II. Values of parameters of the power laws [Eq. (6)]
shown in Fig. 1(b). Fits were done by the method of Gaussian
weighted least squares. Errors in Table II reflect the uncertainties
of the fit parameters.

Suspension Ao ϕa α To ϕb β

P 0.3 0.492� 0.004 1.2 10 0.490� 0.004 2.3
M1 0.4 0.497� 0.008 1.2 7 0.498� 0.007 1.9
M2 0.6 0.496� 0.004 1.4 6 0.496� 0.004 3.0

FIG. 2. Triangles: suspension P; squares, suspension M1;
circles, suspension M2. (a) Moments of the distribution, gðτtÞ,
of decay times in Eq. (7); mean, hτti (closed symbols). Spread, σ
(open symbols). Skewness, ζ (half-filled symbols). The (ma-
genta) vertical bar is an estimate of the error in hτti. (b) Products,
Aτx, (closed symbols) and Ahτti, (open symbols). See text for
details.
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C�ðq; τ�;ϕfÞ. Values of these parameters for ϕ > ϕf for
suspension M2 are included in Fig. 1(b) and for suspen-
sions P and M1 presented in Refs. [23] and [17],
respectively.
Discussion.—The implication of the observation

[Fig. 1(a)] that, for ϕ < ϕf, the timescaled current corre-
lator C�ðq; τ�Þ carries no explicit dependence on q, is that
all interactions among the particles are captured by the
short-time diffusion coefficient DðqÞ. For the case of
suspended hard spheres this means that hydrodynamic
interactions are established on the experimental timescale
(≳10−6 s). Put another way, the scaling of C�ðq; τ�Þ is an
expression or consequence of the point made in the
Introduction, and verified in other work [24–26], that
energy exchanges among the particles occur on sonic times
(τsonic ∼ 10−10 s.). Thus, for longer delay times, having lost
memory of those exchanges, the observed particle current
jðq; tÞ comprises a superposition of randomly fluctuating,
complex Gaussian variables [Eq. (2)]. Alternatively, we
reason that each of the N mutually orthogonal acoustic
modes εt that effects energy exchanges between the
particles at sonic speed creates, in the ensemble of
thermally induced initial conditions, by virtue of the central
limit theorem, a random Gaussian current whose time
correlation function decays exponentially with decay time
τt. The time correlation function of the current [Eq. (1)] is
the corresponding superposition of these exponential
decays [Eq. (7)]. Prior to application of the timescaling
by Eq. (4), decay of the CAF can only be effected by the
processes defined in the Introduction: (I) random sampling
of N microstates—the statistical expression, as observed on
experimental times, of equilibration of the suspension that
actually occurs on sonic times. This process is modulated
by (II), rearrangement of particle configurations by dif-
fusive pathways whose spatial distribution DðqÞ is set by
the structure SðqÞ. Evidently, by results in Fig. 1 and those
in Refs. [16,17], the timescaling effectively divides out (II),
the spatial modulation imposed by the structure, and leaves
in C�ðq; τ�Þ a decay independent of q. WhetherC�ðq; τ�Þ in
fact expresses process (I) remains to be verified. Before
proceeding we emphasize that energy conservation is
implicit in the observed dynamics. Thus, appeal to further
interactions occurring on experimental times, in order to
explain some aspect of the observed dynamics, would be
inconsistent with energy conservation.
On the basis of random sampling of equally accessible

microstates, a decrease in N, consequent on an increase in
ϕ, results in a corresponding decrease in relaxation time τx.
The decrease in τx, seen in Fig. 1(b), appears to be
consistent with this. In addition, conservation of (average)
energy E, stored in the acoustic modes demands that any
decrease in their number N be compensated by a propor-
tional increase in their average squared amplitude a2. Since
the latter is proportional to the amplitude A of the scaled
CAF, E ¼ Na2 ¼ NA is constant. But, as already noted,

Aτx [Fig. 2(b)] decreases systematically with ϕwhile Ahτti,
on the other hand, shows no such variation. The difference
is significant for it shows the product Ahτti is consistent
with energy conservation while the other product Aτx
is not. The implication is that hτti, rather than τx, is a
measure of the average time required to randomly sample
the system’s N microstates; accordingly hτti ∼ N and
logðhτtiÞ is a measure of the entropy. This result corrob-
orates the inference above, the same as that in Ref. [27],
albeit in another context, that absorption of all q depend-
ence by the timescaling [Eq. (4)] is sufficient for the
superposition [Eq. (7)] to apply; the CAF can be expressed
by the sum of independent exponential relaxation func-
tions and its stretching attributed to a distribution gðτtÞ
in the decay times. Alternatively, as illustrated in
Fig. 2(b), describing the CAF by a single decay time τx
and attributing stretching to collective dynamics,such as
caging, violates energy conservation.
Therefore, we now identify the spread σ and specifically

the positive skewness ζ [Fig. 2(a)], indicative of a “tail” of
long decay times in the distribution gðτtÞ of those decay
times, with the tendency of the distribution of the ampli-
tudes of the thermally excited acoustic modes to be biased
toward lower frequencies. In other words, the spectrum of
the momentum field of the thermal bath, or solvent,
changes appreciably with increasing concentration of the
colloidal particles.
Identification of the partitioning of microstates in

C�ðq; τ�Þ has noteworthy consequences: One follows from
extrapolation of power laws fitted to A and τx [Fig. 1(b)]
which find that A → ∞, and τx → 0 at packing fractions ϕa
and ϕb that equate, within experimental error, with the
known freezing value ϕf ¼ 0.494 (Table II). Instantaneous
sampling (τx → 0) of the microstates is consistent with
there being just one (N → 1) accessible state where
essentially all the acoustic energy (A → ∞) resides.
Here, we arrive at a limit, attained by extrapolation beyond
the actual data, that appears as unphysical (A → ∞) as it is
improbable (S → 0), and may be seen merely as a fortu-
itous product of the analysis. Alternatively, one may
consider this limit indicative of an entropic termination,
S ∼ lnðNÞ → 0, “at” the thermodynamic freezing point and,
accordingly, identify the limit of thermodynamic stability
of the suspension’s fluid phase with the partitioning limit
(N → 1) of accessible microstates consistent with that
phase. As such, the partitioning limit of the microstates,
of the longitudinal momentum currents in this case,
presents a definition of the freezing point.
To be clear, this determination of the freezing point of the

suspension’s fluid phase is based solely on the properties of
that phase and contains no information about the other
phase into which it transitions. However, accepting the
above definition, it follows that an increase in ϕ beyond ϕf
into the metastable, two-phase region necessitates collec-
tive, structural dynamics—as in caging—that now impact
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on the transverse momentum currents. Their ultimate parti-
tioning effects separation of the crystal phase. Before this
happens—while the suspension appears amorphous—the
occurrence of collective dynamics in the metastable fluid
means not all particle currents jðq; tÞ are Gaussian. This, as
mentioned under Results and analysis and shown in detail
in previous work [23], is seen by deviation of the CAF from
SE decay for those spatial frequencies, q� around qm, that
manifest that collective dynamics.
So, traversal of the freezing point is also evident from a

dynamical crossover—a qualitative change in the decay of
the CAF. How finely the crossover brackets the above
partitioning limit and thereby locates the freezing point is,
of course, limited by the accuracy and resolution of the
observations.
The more usual approach presumes all momenta have

relaxed to the equilibrium, Maxwell-Boltzmann, distribu-
tion. From this position the thermodynamic limit of the
fluid phase can be determined only by tying it to the crystal
phase at the same pressure and free energy, or the entropy,
in this case [3].
Finally, we suggest that the reduction in the number of

microstates consistent with the one-phase thermodynamic
macrostate is a general feature of a fluid’s dynamics when
approaching its freezing point. This may, however, not
be apparent because the timescales of energy exchanges
and structural relaxation, so advantageously separated in a
suspension, overlap in atomic fluids. Nonetheless, recent
MD simulations [28,29] of atoms with hard sphere and
Lennard-Jones interactions close to their respective freez-
ing points found long-time negative tails in the CAFs that
could be approximated by SEs. So, for these conditions
and more specifically for spatial frequencies q ≈ qm,
where, by virtue of de Gennes slowing [30], structural
relaxation is slowest, sufficient delay occurs between
energy exchanges and structural relaxation to expose
the random sampling of the fluid’s microstates. In all
cases the decrease in decay times and stretching of the
CAFs, respectively indicative of the decrease in the
number and increase in spread of the amplitudes of those
microstates, is clearly evident on the approach to the
respective freezing points. However, the extant data are
not sufficient for extrapolation and location of the parti-
tioning limit with confidence. At the same time crossovers
from one-phase to two-phase regions, identified by
emergence of caging mentioned above, were found to
be consistent with the respective known freezing points.
Summary and conclusions.—Scaling the delay time by

that that characterises Brownian concentration fluctuations
of a hard sphere suspension renders its current autocorre-
lation function independent of spatial frequency and
expressible by a superposition of single exponential decays.
From analyses of this quantity we conclude the following.
First, the average decay time of the exponential

decays reflects the number of microstates—the orthogonal

longitudinal acoustic modes in the interstitial solvent, and
thereby the entropy.
Second, stretching of the CAF expresses the tendency of

the frequency distribution of those acoustic modes to have a
negative skewness.
Third, the partitioning limit of the microstates of the

suspension’s single-phase fluid presents a definition of the
freezing point.
Fourth, any increase in ϕ beyond this point into the two-

phase region will necessarily lead to structures that must
impact the transverse currents.
These findings ratify the statistical equivalence of the

measured time average, of the CAF in this case, and
that obtained from the average over the ensemble of
microstates.
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