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In addition to surface tension lowering and Marangoni stresses, surfactants also induce surface
rheological effects when they deform against themselves at fluid interfaces. Because surface viscosities are
functions of surfactant concentration, surface rheological stresses can compete with capillary, Marangoni,
and bulk stresses in surfactant-laden free surface flows with breakup. To elucidate the effects of surface
rheology, we examine the breakup of a Stokes thread covered with a monolayer of insoluble surfactant
when either surfactants are convected away from the space-time singularity or diffusion is dominant.
Surprisingly, in both limits, surface rheological effects always enter the dominant balance of forces and
alter the thread’s thinning rate. Moreover, if surfactants are convected away from the singularity, we
provide an analytical expression for thinning rate that explicitly depends on surface rheological parameters,
providing a simple route for measuring surface viscosity.
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Introduction.—Adsorption onto and lowering the surface
tension σ̃ of a fluid interface S̃ by surfactants are exploited
in applications as diverse as enhanced oil recovery [1],
treating respiratory diseases [2], and drop or jet breakup
[3,4]. However, surfactant concentration Γ̃ can be nonuni-
form at S̃ because surfactant molecules can be transported
along it by convection and diffusion and also due to
normal dilatation and tangential stretching of S̃ [5–7].
Thus, aside from simply lowering σ̃, nonuniformity in Γ̃
causes gradients in σ̃ and gives rise to tangential interfacial
(Marangoni) stresses. The latter brings about rich physics
including tears of wine, interfacial turbulence in mass
transfer, and droplet bouncing [8,9]. In addition to lowering
σ̃ and the Marangoni effect, surfactants may also induce
surface rheological effects as surfactant molecules deform
against each other on S̃.
Here, we analyze the interesting but heretofore poorly

understood physics that arises when surface rheology is
accounted for in the breakup of a viscous liquid jet (thread).
The motivation for this work comes from the need to
develop a method to measure surface viscosities, which
to date have proven difficult to determine [10], and
improve the understanding of surface rheological effects
in drop formation from nozzles (inkjet printing and sprays
[4,11–13]). The role of surface rheology on thread pinch-
off is best examined in two limits: when (i) surfactants are
swept away from the space-time singularity and are hence
highly nonuniformly distributed at the interface or (ii) they
uniformly cover the surface of the thinning thread for all
time. Surprisingly, little has been done on this important
problem even though it has recently been shown that the
increase in surfactant accumulation in satellite droplets
during drop formation cannot be explained without
accounting for surface viscosities [14].

Problem formulation.—To gain insights into thread
breakup in the presence of surface viscous stresses, we
use simulations and theory, and adopt the simplest con-
figuration possible: a cylindrical, infinitely long column of
liquid of radius R that is made to undergo capillary breakup
by subjecting it to a shape perturbation. The thread is an
incompressible Newtonian fluid of viscosity μ and sur-
rounded by a passive gas (pressure datum). The surface
tension of the interface between the pure liquid and the gas
is σ0. The thread’s surface is initially covered uniformly
with a monolayer of insoluble surfactant at concentration
Γ̃0. We nondimensionalize the problem by using R, σ0=μ,
and Γm, the maximum packing value of Γ̃, as characteristic
length, velocity, and concentration. Hereafter, variables
without tildes are dimensionless counterparts of ones with
tildes. Thread shape and surfactant concentration are
represented as r ¼ hðz; tÞ and Γðz; tÞ in cylindrical coor-
dinates (r,z) (r and z: radial and axial coordinates), t time,
and h the shape function. Thread breakup is initiated by
subjecting the column’s surface SðtÞ to an axially periodic
sinusoidal perturbation of wave number k and amplitude
ϵ (Fig. 1).
Since thread shapes near breakup are slender, the dyna-

mics is governed by a set of dimensionless 1D slender-
jet equations [15]: 3ðh2vzÞz=h2 þ ð2HσÞz þ 2σz=hþ
ð9BshvzÞz=2h2 þ ðBdhvzÞz=2h2 ¼ 0, which is the 1D force
balance or momentum equation in the Stokes limit, i.e.,
when

ffiffiffiffiffiffiffiffiffiffiffi
ρRσ0

p
=μ → 0 (ρ: density), ht þ vhz þ hvz=2 ¼ 0,

which is the kinematic boundary (KB) condition or 1D
mass balance, and ΓtþvΓzþΓvz=2−ðΓzzþΓzhz=hÞ=Pe¼0,
which is the 1D convection-diffusion (CD) equation.
Subscripts z and t indicate partial differentiation and
v ¼ vðz; tÞ is axial velocity. 2H ¼ fhzz=½ð1þ h2zÞ3=2�g −
f1=½hð1þ h2zÞ1=2�g is twice the mean curvature [16].

PHYSICAL REVIEW LETTERS 124, 204501 (2020)

0031-9007=20=124(20)=204501(6) 204501-1 © 2020 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.124.204501&domain=pdf&date_stamp=2020-05-19
https://doi.org/10.1103/PhysRevLett.124.204501
https://doi.org/10.1103/PhysRevLett.124.204501
https://doi.org/10.1103/PhysRevLett.124.204501
https://doi.org/10.1103/PhysRevLett.124.204501


Pe≡ Rσ0=μD is the Peclet number, where D stands for
surfactant diffusivity. Bs ≡ μs=μR and Bd ≡ κs=μR are the
Boussinesq numbers defined in terms of the surface shear
and dilatational viscosities μs and κs, respectively. The
terms in the 1D force balance correspond to the axial
derivatives of viscous stress, capillary pressure, Marangoni
stress, and surface viscous stresses associated with surface
shear deformation and dilatation, respectively. In arriving at
the latter, we have used the Boussinesq-Scriven model [17].
Surface tension σðz; tÞ and surfactant concentration Γðz; tÞ
are related via the Syzskowsky equation of state [18],
σ ¼ 1þ β lnð1 − ΓÞ. Here β ¼ ΓmRgT=σ0 is the surfactant
activity or strength parameter, where Rg is the gas constant
and T is the temperature. Note that surface shear and
dilatational viscous stresses take on the same mathematical
forms to leading order. Thus, we set Bd ¼ Bs for the sake of
simplicity and use Bs in the rest of the Letter. To relate
surface viscosity with surfactant concentration, we take the
Boussinesq number to vary linearly with Γ, Bs ¼ Bs0Γ=Γ0

[14,19], where Bs0 is the Boussinesq number at initial
surfactant coverage Γ0.
The governing equations are solved by a 1D finite

element-based algorithm (FEA) and analyzed theoretically.
Results obtained from 1D simulations have been verified by
showing that they accord with predictions made with a 2D
FEA algorithm that does not invoke the slender-jet
assumption. In what follows, simulation results are reported
when β ¼ 0.3, Γ0 ¼ 0.5, and k ¼ 0.7.
Results: Limit of Pe ¼ ∞.—In the absence of surface

rheological effects, how much surfactant is present where
a thread breaks is set by Peclet number Pe ¼ Rvc=D
(vc ≡ σ0=μÞ, which measures the importance of convec-
tion, which sweeps surfactant away, to diffusion, which
replenishes it. In macroscale flows (crop spraying) where
Pe ≫ 1, it accords with intuition and was shown in
Refs. [20–22] that surfactants are convected out of the
thinning neck, and have no effect on thinning rate. In other
words, thinning rate for a surfactant-laden thread is
identical to that of a surfactant-free one [18]. Although

the rate of thread thinning is unchanged by surfactants, they
impart a significant imprint by altering the thread’s shape
far away from the pinch point: Stokes threads can break
asymmetrically and threads with inertia can exhibit micro-
thread cascades [23,24]. Here, we show for the first time
that thinning rate can be altered by surfactants when surface
rheological effects are included.
Figure 2 shows the variation with time remaining until

breakup τ≡ t0 − t, where t0 is the breakup time, of the
thread’s minimum radius hminðtÞ, the axial length scale
z0 ≡ zΛhmin

− z0 where 1 < Λ < 1.2, the axial velocity scale
v0 ≡ vΛhmin

, and surfactant concentration where thread
radius is a minimum Γmin ≡ Γhmin

for a thread of Pe ¼
∞, Bs0 ¼ 0.1, and h0 ¼ 1 − ϵ ¼ 0.6. Henceforward, Λ ¼
1.04 wlog [24]. Figure 2 makes plain that all dynamical
variables exhibit power-law dependencies on τ as τ → 0.
Specifically, hmin ∼ τ, v0 ∼ τ−0.825, z0 ∼ τ0.175, and Γmin ∼ τ.
We note that the same axial scaling exponent of 0.175 is
obtained if it is instead deduced by monitoring the variation
of the planar curvature hzz at hmin with τ. In the next three
paragraphs, we predict all but one of the aforementioned
scaling exponents and also the rate of thread thinning
analytically.
First, we note that in the limit as Pe → ∞, the CD

equation and the boundary conditions on Γðz; tÞ become
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FIG. 1. Definition sketch showing the thread at t ¼ 0 when the
interface is subjected to a perturbation of wavelength λ ¼ 2π=k.
At that instant, hðz; 0Þ ¼ 1 − ϵ cosðkzÞ and Γðz; 0Þ ¼ Γ0. The
problem domain is 0 ≤ z ≤ π=k. h0 ≡ hminðt ¼ 0Þ ¼ hð0; 0Þ
denotes the initial minimum thread radius.
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FIG. 2. Computed variation of hmin (green square symbols), z0 ≡
z1.04hmin

− z0 (orange diamond symbols), v0 ≡ v1.04hmin
(red circle

symbols), and Γhmin
(blue triangle symbols) with τ for a thread of

Pe ¼ ∞. Here Bs0 ¼ 0.1 and h0 ¼ 0.6. The solid black lines of
indicated slopes correspond to power-law exponents predicted
from theory. The pink dotted line is Papageorgiou’s solution,
hmin ¼ 0.0709τ, for a thread with a clean interface or a surfactant-
covered thread without surface rheological effects. The black
dashed line is the new analytical solution in the presence of surface
rheological effects, hmin ¼ ½ð0.0709Þ=ð1þ 5Bs0=3h0Þ�τ. Inset:
Enlarged view of hmin and Γmin versus τ as τ → 0.
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identical to the KB condition and the boundary conditions
on hðz; tÞ. Therefore, if Γðz; 0Þ and hðz; 0Þ have the same
functional form, Γðz; tÞ ¼ c0hðz; tÞ, where c0 is a constant.
If not, Γðz; tÞ ¼ chðz; tÞ, where c is a function that obeys
Dc=Dt ¼ 0. In the former case, c0 ¼ Γ0=h0 and in the
latter, cjz¼0 ≡ c0 ¼ Γ0=h0. Given that as hmin → 0 and/or
τ → 0, Γmin → 0 (Fig. 2), the Szyskowski equation can be
linearized near pinch-off as σ ¼ 1 − βΓ, which is
used below.
On account of the power-law dependencies revealed in

Fig. 2 and the self-similarity of the dynamics for Stokes
threads without [25] and with [26] surfactants, we adopt the
self-similarity ansatz here and write hðz; tÞ ¼ ταhHðξÞ,
vðz;tÞ¼ταvVðξÞ, Γðz; tÞ ¼ ταΓGðξÞ, and ξ≡ ðz − z0Þ=ταz ,
where ξ is the similarity variable, z0 the axial location
where the thread will pinch-off, αh, αv, αΓ, and αz are
scaling exponents, and H, V, and G are similarity func-
tions. Recasting the KB condition onto similarity space
yields −αhHþαzξH0þτ1þαv−αzðVH0þHV 0=2Þ¼0, where
prime denotes differentiation with respect to ξ. Requiring
that the ODE in similarity space cannot depend on τ, we
deduce αv ¼ αz − 1 [27]. Using the linearized form of the
Szyskowski equation, the 1D force balance becomes
½3ταhþαv−αzH2V 0 þH þ ð5Bs0=Γ0ÞταΓþαv−αzHGV 0�0 ¼ 0. It
is worth noting that the Marangoni force has dropped out as
it is smaller than the other forces; balancing the remaining
forces in the last equation and using the KB condition
reveals αh ¼ αΓ ¼ 1. We further note that because this is a
self-similarity of the second kind, αz is left undetermined.
A standard way of determining αz is by solving the PDEs in
physical space. However, it has already been shown in
Fig. 2 that αz ¼ 0.175 (and αv ¼ −0.825). While the sca-
ling exponents for h, z, and v are identical to those obtained
by Papageorgiou for a Stokes thread in the absence of
surfactants [25], his scaling law (hmin ¼ 0.0709τ) does not
exactly fit the simulation data in Fig. 2. Therefore, we will
next perform a more careful analysis of the equations in
similarity space.
We first note that the ODEs in similarity space are

invariant under the transformation ξ → −ξ, V → −V,
H → H, and G → G. Moreover, the KB and CD equation
can be written as H0=H ¼ ½1 − ð1=2ÞV 0�=½V þ αzξ� and
G0=G ¼ ½1 − ð1=2ÞV 0�=½V þ αzξ�. Therefore, there is a
point ξ0, where V þ αzξ ¼ 0. In order to remove the
singularity, 1 − 1

2
V 0 ¼ 0 at ξ0. Using the symmetry and

asymmetry discussed previously, it can be readily shown
that Vðξ0Þ ¼ 0 and ξ0 ¼ 0. Hence, V 0ðξ0Þ ¼ V 0ð0Þ ¼ 2.
Thus, the similarity functions can be expanded in
a series about ξ ¼ 0 as HðξÞ ¼ P∞

k¼0H2kξ
2k, VðξÞ ¼P∞

k¼0 V2kþ1ξ
2kþ1, and GðξÞ ¼ P∞

k¼0 G2kξ
2k. Substitution

of the series expansions into the ODEs yields the following
recurrence relations for the coefficientsH2k,G2k, and V2kþ1

(note that V1 ¼ 2):

½A�

2
64

H2k

V2kþ1

G2k

3
75 ¼

2
64
f1ðH2k−2; V2k−1; G2k−2Þ

f2ðH2k−2; V2k−1Þ
f3ðV2k−1; G2k−2Þ

3
75: ð1Þ

Nonzero elements of the coefficient matrix A are given by
A11¼2k½12H0þ1þð10Bs0=Γ0ÞG0�, A12 ¼ 2kð2kþ 1Þ×
½3H2

0 þ ð5Bs0=Γ0ÞG0H0�, A13 ¼ 2kð10Bs0=Γ0ÞH0, A21 ¼
2ð2þ αzÞð2kÞ, A22 ¼ H0ð2kþ 1Þ, A32 ¼ G0ð2kþ 1Þ, and
A33 ¼ 2ð2þ αzÞð2kÞ. The terms on the right side, f1, f2,
and f3, depend on lower-order coefficients. We note that
H ¼ H0, V ¼ V1ξ ¼ 2ξ, and G ¼ G0 is an exact solution
of the ODEs and all the higher order terms involving H2k,
V2kþ1, and G2k for k ≥ 1 in the recurrence relations vanish
unless the determinant of the 3 × 3 coefficient matrix A
equals zero for some k ¼ m ≥ 1. When the determinant
vanishes, it follows that H0¼f1=(12½mð2þαzÞ −1�)g−
ð5Bs0=3Γ0ÞG0. If the value of m is set to unity [25],
H0 ¼ f1=½12ð1þ αzÞ�g − ð5Bs0=3Γ0ÞG0. Since Γ ¼ ch
and solutions are symmetric, it can be shown that
G0 ¼ c0H0 ¼ ðΓ0=h0ÞH0. With αz determined from sim-
ulations, the theory developed here predicts that hmin ¼
½ð0.0709Þ=ð1þ 5Bs0=3h0Þ�τ and can be seen to be in
excellent agreement with simulation data reported in
Fig. 2. It is worth noting that Papageorgiou’s [25] solution
is recovered when Bs0 ¼ 0 or surface rheological effects
are absent, and 5Bs0G0=3Γ0H0 represents the relative
importance of surface viscous force to its bulk counterpart
to leading order near pinch-off. Plainly, surface rheological
effects compete with their bulk counterparts as τ → 0.
Results: Limit of Pe ¼ 0.—Figure 3(a) shows the varia-

tion of hmin with t predicted from simulations when Pe ¼ 0

0 2 4 6 8

10-4

10-3

10-2

10-1

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

0

0

0.5

1

1.5

(a)

(b)

8 8.2 8.4 8.6 8.8 9

10-2

10-3

10-4

FIG. 3. (a) Variation of hmin with t when Pe ¼ 0 and
Bs0 ¼ 0.001. Inset: a blowup of the exponential thinning region.
(b) Time evolution of the velocity profile vðz; tÞ (orange) and
thread shape hðz; tÞ (green) during exponential thinning.
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and Bs0 ¼ 0.001, and reveals that the asymptotic thinning
is exponential and varies as e−ωt (ω−1: time constant).
Figure 3(b) further shows that unlike surfactant-free threads
or ones for which Pe ¼ ∞, the velocity in the thinning neck
does not diverge in finite time but grows more slowly.
Moreover, Fig. 3(b) reveals that near the midplane (z ≈ 0),
the transient velocity profiles collapse onto a straight line of
constant slope. Taking vz ¼ 2ω near z ¼ 0, and substituting
this observed behavior into the KB condition yields ht ¼
−ωh at z ¼ 0, confirming that thread thinning is exponential.
To gain insights into the balance of forces and deduce the

constancy of vz for z ≪ 1 and t ≫ 1, we turn to the CD
equation and 1D force balance. When Pe ¼ 0, the former
reduces to Γzðz; tÞ ¼ 0; therefore, Γ ¼ ΓðtÞ. Since the
total amount of surfactant is conserved, it follows that
ΓðtÞ ¼ R

Sðt¼0Þ 2πhðz; t ¼ 0ÞΓ0dz=
R
SðtÞ 2πhdz. Intuition

dictates and simulations confirm that the surface area of
the jet SðtÞ tends to a virtually constant value as time grows
without bound. Therefore, all parameters that depend on
surfactant concentration, Γ, σ, and Bs, are constants.
Rewriting the 1D force balance in a more convenient
manner, ð∂=∂zÞð3h2vz þ hσ þ 5BshvzÞ ¼ 0, reveals that
as t → ∞ and hmin → 0, and since the problem variables
Γðz; tÞ ¼ Γ; σðz; tÞ ¼ σ, and Bsðz; tÞ ¼ Bs, (i) bulk viscous
force is negligible, (ii) capillary and surface viscous forces
balance, and (iii) vzðz; tÞ ¼ const.
In most cases involving breakup (cf. Ref. [28]), thread

thinning follows self-similar dynamics and physical vari-
ables exhibit power-law dependencies on time. To address
why the dynamics in this case does not behave in the typical
way, we start by assuming such a dependence and dem-
onstrate this leads to a contradiction. As in the large Pe
limit, we assume that h ∼ ταh , z0 ∼ ταz , v0 ∼ ταv , and
Γ ∼ ταΓ . Using the arguments made in the previous para-
graph, it then follows that Γðz; tÞ ¼ Γ or αΓ ¼ 0. Clearly, in
this case, Marangoni stress vanishes and the only remaining
forces are bulk and surface viscous forces and capillary
force. By considering the local Boussinesq number,
Bloc ≡ BsðΓÞ=hðz; tÞ, or ratio of surface to bulk viscous
force, it can be shown that Bloc → ∞ as τ → 0, i.e.,
asymptotically, bulk viscous force is negligible in com-
parison to surface viscous force. Hence, the only two forces
that can balance are surface viscous and capillary forces.
Balancing them reveals αv ¼ αz, a result that is in clear
contradiction with the KB condition which predicts
αv ¼ αz − 1. Thus, it is not possible for the dynamical
variables to exhibit a power-law dependence on time.
The only other situation in which a liquid thread thins

exponentially is when it is viscoelastic (VE), e.g., a fluid
whose rheology can be characterized by the Oldroyd-B
constitutive relation [29–32]. Therefore, it is instructive
to compare the dynamics of exponentially thinning VE
threads and that of surfactant-covered threads when
Pe ¼ 0. For a VE thread, the entire jet tends asymptotically
to a long and slender, nearly perfectly (hz ≈ 0) cylindrical

thread that connects to a nearly spherical drop with a corner
region that forms at their junction [31,33]. Over the entirety
of this thread, vz is spatially uniform, and as t → ∞,
capillary stress grows and is balanced by axial elastic stress
while radial elastic stress decays. For a surfactant-laden
thread with surface rheological effects, only a short section
but not the entirety of the thread is nearly cylindrical. Thus,
over the entire thread, hz is small but finite and vz again
varies slightly with z. As described above, surface viscous
and capillary forces balance along the thread but radial
stress does not decay. In other words, here both the axial
and the radial components of the surface viscous force
remain important as t → ∞. The impact of this observation
on the thread profile over the entire domain and what
factors set the length of the cylindrical thread remain open
problems.
Conclusions.—We have examined the effects of surface

rheology on the thinning of a thread undergoing Stokes
flow in two limits, Pe ¼ ∞ and 0. When Pe ¼ ∞, surfac-
tants are asymptotically swept away from breakup but still
play a crucial role in the dynamical balance of forces. We
have shown that all three forces, bulk viscous, surface
viscous and capillary, balance and give rise to a self-
similarity of the second kind and to power-law scalings
hmin ∼ Γmin ∼ τ, z0 ∼ τ0.175, and v0 ∼ τ−0.825. Specifically, it
has been shown that hmin ¼ ½ð0.0709Þ=ð1þ 5Bs0=3h0Þ�τ
from theory. This relation provides a correction to
Papageorgiou’s [25] result for clean interfaces, and reveals
that surface rheological effects act to slow the rate of
thinning, a finding that accords with intuition. Moreover,
this result provides a route to measuring surface rheological
properties. Alternatively, if hðtÞ as well as ΓðtÞ could be
measured [34], then surface viscosity can be determined to
leading order by using hmin ¼ ½0.0709 − ð5Bs0=3Γ0ÞG0�τ,
where G0 is the surfactant depletion rate at z ¼ 0.
It is remarkable but counterintuitive that surface viscos-

ities can be important even when surfactants are swept
away from the pinching zone. Indeed, surface viscous stress
can remain comparable to bulk viscous stress as surfactants
are swept away from the pinching region and surface
viscosities vanish because surface area-to-volume ratio
1=h → ∞ as h → 0 [35].
Extension of the results when Pe ¼ ∞ is worthwhile

including generalization of the correction to Papageorgiou’s
result [37] and accounting for inertia [38]. A number of
extensions when Pe ¼ 0 is also possible [39]. In both limits,
it would be valuable to study effects of surfactant solubility
[40] and intermolecular forces on thinning [41,42].

We gratefully acknowledge financial support by the
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Note added.—It was pointed out that exponential thinning
of a viscous thread with a uniform surfactant concentration
has been described recently in a preprint [43,44].
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