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We demonstrate state-dependent optical lattices for the Sr optical qubit at the tune-out wavelength for its
ground state. We tightly trap excited state atoms while suppressing the effect of the lattice on ground state
atoms by more than 4 orders of magnitude. This highly independent control over the qubit states removes
inelastic excited state collisions as the main obstacle for quantum simulation and computation schemes
based on the Sr optical qubit. Our results also reveal large discrepancies in the atomic data used to calibrate
the largest systematic effect of Sr optical lattice clocks.
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The experimental implementation of innovative quantum
simulation and quantum computation schemes based on the
optical qubit in strontium [1–7] has been hindered by the
presence of strong inelastic collisions between atoms in the
excited qubit state [8]. Although these losses can be
suppressed in deep three-dimensional optical lattices [9],
such strong trapping precludes using tunneling and elastic
collisions [10] to entangle atoms in different lattice sites.
Controlled collisional phase gates [7] in particular require
high-fidelity, independent control over atoms in either qubit
state 1S0 (g) and 3P0 (e), shown in Fig. 1(a). Here, we
provide a solution to these problems by demonstrating
optical lattices at the so-called tune-out wavelength for the
ground state [11,12], where its dipole polarizability van-
ishes, as shown in Fig. 1(b). At this tune-out wavelength, an
e atom is tightly trapped, while a g atom is free to move.
This condition shuts off the inelastic e-e collisions [8],
while allowing the use of the elastic e-g and g-g collisions
[10] to engineer novel systems for quantum simulation [13–
16] and computation [7].
With a novel method, we measure an absolute frequency

of 434972130ð10Þ MHz for the tune-out wavelength in
88Sr. At the tune-out wavelength, the differential ac Stark
shift on the optical qubit transition is only due to the

polarizability of the e state. We directly measure this
polarizability with Stark shift spectroscopy, demonstrate
trapping of e atoms in an optical lattice at the tune-out
wavelength, and show that losses from light scattering are
small. Given a moderate laser frequency stability corre-
sponding to our measurement uncertainty, e atoms are
tightly trapped while the trap’s effect on g atoms is
suppressed by more than 4 orders of magnitude, the highest
level of suppression in any system to date [17–25].
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FIG. 1. (a) Simplified Sr level diagram. Optical dipole traps in
the red and infrared for the ground (g) and excited (e) qubit
(clock) states of Sr are given by coupling to two low-lying singlet
and triplet states, respectively. (b) The trap depth for each clock
state as a function of wavelength is proportional to the dynamic
dipole polarizability. At the “magic wavelength” (star), g and e
experience the same trap depth. At the “tune-out wavelength”
(circle), an atom in g is free to move, while an atom in e remains
trapped. All quantities marked with an asterisk are measured in
this Letter.
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We combine these measurements with high-precision
atomic structure theory and direct lifetime measurements of
the 3P1 state [26] to extract new values for the 1P1 lifetime.
We find a 7σ discrepancy to the currently accepted 1P1
lifetime from photoassociative spectroscopy [27]. Our
polarizability measurements also improve the 3S1 lifetime
by an order of magnitude and resolve discrepancies
between prior measurements [28–30]. Our results highlight
the importance of direct and precise atomic lifetime
measurements to bring the accuracy of optical lattice clocks
[31] into the 10−19 regime.
Measuring the tune-out wavelength.—We measure the

tune-out wavelength by trapping g atoms in a magic-
wavelength optical lattice, overlapping an additional opti-
cal lattice beam close to the tune-out wavelength and
modulating its intensity. The modulation causes parametric
heating and trap loss. Minimizing the induced loss allows
us to precisely determine the tune-out wavelength. Most
measurements of tune-out wavelengths use atom interfer-
ometers based on thermal atoms [17–20] or quantum-
degenerate gases [21–24]. In contrast, our method is similar
to Ref. [25] in that we measure trap loss with an ac method,
but with long integration times, reduced systematic effects,
and applicability to atoms in excited states, molecules, and
trapped ions.
We begin by loading 2 × 105 g atoms [32] into a deep

near-vertical one-dimensional optical lattice, created by
retroreflecting 290 mW of magic-wavelength laser light at
813.4274ð2Þ nm, as sketched in Fig. 2(a). The magic-
wavelength lattice has a longitudinal (transverse) trap
frequency of ∼40 kHz (∼100 Hz), corresponding to a

lattice depth of kB × 5.6 μK ¼ h × 116 kHz and a 1=e2

beam waist of 75 μm, where kB (h ¼ 2πℏ) is the
Boltzmann (Planck) constant. The atoms occupy an ellip-
soid with a 1=e2 diameter of ∼240 μm (∼80 μm) along the
longitudinal (transverse) trap axis, with a typical lattice site
filling ∼500, as shown in Fig. 2(a). From such in situ and
time-of-flight absorption images, we determine atom num-
bers and temperatures [32].
We then overlap the deep magic-wavelength lattice with

a shallow one-dimensional lattice created by retroreflecting
4.5 mW of light near the tune-out wavelength, as shown in
Fig. 2(a). This geometry allows us to heat the atoms in the
combined lattice by intensity modulating the shallow
lattice, as sketched in Fig. 2(b). Since the two lattices
are incommensurate there will be lattice sites in which
heating due to phase modulation dominates, while in others
heating due to amplitude modulation dominates. By
changing the modulation frequency and observing atom
loss from the trap [33], we obtain spectra as shown in
Fig. 2(c). We take a reference spectrum (top) by modulating
the deep lattice intensity, while the shallow lattice is turned
off. In this case, we observe a single minimum in the spe-
ctrum at fmod ≃ 80 kHz, corresponding to amplitude modu-
lation and parametric heating [33] that results in transitions
between lattice bands that are twomotional quanta apart. The
response of the combined lattice due to intensity modulation
of the shallow lattice (bottom) shows another minimum at
∼40 kHz, corresponding to phasemodulation and transitions
between adjacent lattice bands [33].
To compare the effect of heating at different wavelengths

of the shallow lattice, we intensity modulate it at fmod and
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FIG. 2. (a) Experimental setup and optical lattice geometry. We overlap the shallow lattice with the deep magic-wavelength lattice and
trap atoms in this combined trap. (b) When modulating the amplitude of the shallow lattice, the atoms are heated due to phase and
amplitude modulation of the wells of the optical lattice. (c) Lattice modulation spectrum when modulating the magic-wavelength lattice
without the shallow lattice (top) and when modulating the shallow lattice (bottom) in the combined trap. (d) Lifetime measurements for
bosonic 88Sr and fermionic 87Sr, when the shallow lattice is modulated or not. (e) The induced exponential loss rate Γ has a minimum at
the detuning from the 1S0 − 3P1 transition for 88Sr corresponding to the tune-out wavelength. (f) For 87Sr, interactions lead to an induced
two-body loss rate b and an increased uncertainty.
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measure the resulting exponential trap loss rate. Other loss
mechanisms such as losses due to intensity noise of both
lattices, collisions with background gas atoms, and photon
scattering losses, also contribute to the measured heating
rate. We determine the induced trap loss rate ΓðωÞ by taking
the difference between the measured loss rate without
modulation and with modulation. Examples of such mea-
surements are shown in Fig. 2(d) for 88Sr (top) and 87Sr
(bottom). The 88Sr data are well described by an exponen-
tial decay because of the isotope’s vanishingly small
scattering length. In contrast, the 87Sr data show additional
superexponential two-body decay. This decay is due to
elastic interactions [34,35] that lead to evaporative trap loss,
which we fit with a two-body decay term [36]. The induced
trap loss rate vanishes when the ground state polarizability
αg crosses zero at the tune-out wavelength, and it is
proportional to [36]

ΓðωÞ ∝ α2gðωÞI2modf
−2
mod; ð1Þ

where ω is the optical frequency of the tune-out laser, and
Imod is the intensity modulation depth. To compensate for
drifts in Imod and the trap frequency, we normalize the
measured ΓðωÞ according to Eq. (1). The wavelength of the
shallow lattice laser is locked to a wave meter but measured
with a self-referenced femtosecond frequency comb, result-
ing in an absolute frequency error of 3 MHz.
The normalized data for 88Sr and 87Sr are shown in

Figs. 2(e) and 2(f), respectively, as a function of detuning
from each isotope’s 1S0 − 3P1 transition [47]. The induced
loss rate Γ for both isotopes shows a minimum at detuning
Δt, corresponding to the tune-out wavelength for each
isotope. For 87Sr, the induced two-body loss coefficient b,
given by the difference of the two-body coefficients
extracted from the underlying atomic decay curves, shows
the same behavior with respect to detuning as Γ. This
behavior can be explained by an increased tunneling rate in
the second lattice band, leading to increased evaporation,
correlated exponential and two-body decay rates, and an
increased uncertainty for Δ87

t . We model the induced loss
rate as ΓðΔÞ ¼ c0ð1 − Δt=ΔÞ2 [36], where Δ≡ ω − ω3P1 is
the detuning from the isotope-shifted 1S0 − 3P1 transition,
and the unused fit parameter c0 relates the parametric
heating rate to the trap loss rate [33]. We find Δ88

t ¼
2π × 143.009ð8Þ GHz and Δ87

t ¼ 2π × 142.86ð8Þ GHz for
88Sr and 87Sr, respectively. These numbers are in good
agreement, considering the empirical two-body loss model
for 87Sr. In the Supplemental Material [36], we derive a
conservative upper limit jΔ88

t − Δ87
t j < 2π × 23 MHz due

to hyperfine splitting, vector, and tensor shifts. In the
following, we use the measured Δ88

t for 87Sr and suppress
the superscript for clarity. This choice leads to a residual
αg ¼ �0.05 a:u: from the 2.4 a:u:=GHz polarizability
slope around Δt. Here 1 a:u: ¼ 4πϵ0a30 is the atomic unit

of polarizability, and ϵ0 (a0) is the vacuum permittivity
(Bohr radius).
To minimize systematic shifts in Δt due to laser noise,

unsuppressed longitudinal laser modes, and amplified
spontaneous emission, we Fourier filter [36] the shallow
lattice laser and suppress light at the 1S0 − 3P1 transition by
> 90 dB compared to the carrier. To avoid saturation of Γ,
and to work with the same Imod throughout, we limit the
measurement range to a few gigahertz. Reducing the
measurement range further does not change Δt signifi-
cantly, and we estimate saturation effects to be negligible.
For 87Sr, we observe and fit a statistically significant

offset of 2.3ð4Þ × 10−3 s−1 in the induced trap loss rate.
While the offset for 87Sr could be explained by contribu-
tions from vector and tensor polarizabilities, these cannot
occur in 88Sr. When fitting the 88Sr data with an offset, we
find a much smaller value of 2ð1Þ × 10−4 s−1, which also
causes a systematic shift of the tune-out frequency of
2 MHz. In conclusion, we find that the tune-out frequency
ωt for the ground state is detuned from the 1S0 − 3P1
transition at ω3P1 by

Δt=2π ¼ ð143.009 GHzÞ � ð8 MHzÞstat � ð2 MHzÞsys:
ð2Þ

Measuring the excited state polarizability.—Since the
polarizability of the g state vanishes at ωt, the ac Stark shift
on the clock transition induced by a laser beam at ωt is
solely determined by the excited state polarizability. For
this reason, we can directly measure the e state polar-
izability αeðωtÞ by Stark shift spectroscopy. For these
measurements, we prepare a sample of 87Sr in a one-
dimensional magic-wavelength lattice. We propagate a
clock laser beam at 3.5° with respect to the lattice axis
and overlap it with the lattice at the position of the atoms.
A typical spectrum of the clock transition is shown in
Fig. 3(a), consistent with a ∼1 μK temperature [48],
confirmed by time-of-flight data. On the carrier transition,
we observe damped Rabi oscillations, consistent with the
mismatch between the lattice axis and the clock laser wave
vector [48]. For the following measurements, we illuminate
the atoms with the clock laser for 0.3 ms, corresponding to
the maximum excited state fraction. For the ac Stark shift
spectroscopy, we additionally apply a laser beam at ωt with
a 1=e2 waist of 300 μm, as illustrated in Fig. 2(a). As a
function of clock laser detuning, we observe the spectra
shown in Fig. 3(b) and fit them to extract the center
frequencies. To calibrate the intensity, we load a sample of
88Sr into the same magic-wavelength lattice at the same
position as the 87Sr sample. After diabatically switching off
the lattice, we measure free-space Rabi oscillations on each
of the three 1S0 − 3P1 transitions in a small magnetic bias
field, as shown in Fig. 3(c). We fit the Rabi oscillations with
an analytic solution to the optical Bloch equations [49] and
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extract the Rabi frequency Ω� for each σ� polarization
component, for an applied power P0 ¼ 112 μW. The Rabi
frequency of the Stark-shifting beam with power P is
calibrated as Ω2 ≡ ðΩ2þ þ Ω2

−ÞP=P0, which allows
expressing the ac Stark shift of the clock transition at
the tune-out frequency Δωeg ¼ −ω3

3P1
τ3P1αeðωtÞΩ2=

ð12πϵ0c3Þ in terms of measured quantities, where c is
the speed of light. In Figure 3(d), we plot Δωeg as a
function of the saturation parameter s0 ¼ 2Ω2τ23P1 and use a

linear fit to extract the excited state polarizability

αeðωtÞ ¼ ð1555� 8stat � 2sysÞ a:u: ð3Þ

of 87Sr at the tune-out frequency, where the systematic
uncertainty includes the mismatch between the tune-out
frequency for 88Sr and 87Sr, but is dominated by the effect
of the laser spectrum. Our measured polarizability agrees
well with our theoretical prediction of 1546ð14Þ a:u:, based
on Ref. [50].
Trapping excited atoms at the tune-out wavelength.—

We prepare a sample of e state 87Sr atoms in the magic-
wavelength lattice and transfer them to the tune-out lattice
[36]. In Fig. 4, we compare the number of e atoms in the
tune-out lattice as a function of hold time to the case where
we trap e atoms in the magic-wavelength lattice. In both
cases, the atoms decay superexponentially via e-e colli-
sions [8]. In the magic-wavelength lattice, this inelastic loss
dominates, while the atoms in the tune-out lattice

experience additional exponential loss with a 1=e lifetime
∼1.2 s. The intensity of the tune-out lattice is chosen to
match the trap frequencies of the magic-wavelength and
tune-out lattices at ∼40 kHz, corresponding to a lattice
depth of ∼17 × ℏωrec (ωrec=2π ¼ 4.8 kHz is the lattice
recoil frequency), confirmed by parametric heating. The
measured lifetime agrees well with the theoretically pre-
dicted loss due to photon scattering for each lattice axis of
24 s per recoil of lattice depth. Depending on the appli-
cation, a compromise between lattice depth and tunneling
rate needs to be found. For instance, a two-dimensional
tune-out lattice trapping e atoms in a Mott insulator state
would have a lifetime ∼1 s.
Determination of atomic lifetimes.—The g state polar-

izability αgðωÞ ¼ αgð1P1;ωÞ þ αgð3P1;ωÞ þ αvcðωÞ is
dominated by coupling to the 1P1 and 3P1 states. All other
contributions from valence and core electronic states are
small and we calculate their combined value αvc with
percent-level precision [50]. Since both 1P1 and 3P1 decay
only to g, and because the tune-out frequency is far detuned
with respect to each state’s natural linewidth, each con-
tribution αgðj;ωÞ ∝ τ−1j [36], where τj is the state’s natural
lifetime. At the tune-out frequency αg vanishes, leading to a
strong constraint on the relationship between the lifetimes
τ1P1 and τ3P1 . While τ3P1 has been recently measured directly
[26], the currently accepted value for τ1P1 comes from
photoassociative spectroscopy [27,51]. Using our tune-out
wavelength and τ3P1 [26], we find τ1P1 ¼ 5.234ð8Þ ns [36], a
7σ discrepancy with the currently accepted value [27]. The
e state polarizability αe at the tune-out wavelength is
dominated (87%) by the 3P0 − 3S1 transition. We deter-
mined all other contributions with a total uncertainty of
4 a.u. using a high-precision relativistic method [50].
Combining these theoretical values with our measurement
of αe determines the 3P0 − 3S1 matrix element. The 3S1 state
dominantly decays to the 3PJ levels, while its decay to 1P1 is
negligible at the present level of accuracy. We calculated
the 3S1 − 3PJ branching ratios with 0.1% accuracy, which
allows us to extract τ3S1 from the 3P0 − 3S1 matrix element.
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This accurate prediction of branching ratios is possible due
to very similar electronic correlation effects for these
transitions, which largely cancel for their ratios. We find
τ3S1 ¼ 13.92ð11Þ ns, an improvement of an order of mag-
nitude over prior measurements that ranged from 10.9ð1.1Þ
to 15.0ð8Þ ns [28–30]. We note in passing that the currently
best values for τ3P1 and the lifetime of the 3D1 state are
correlated because they are extracted from a single dataset
[26]. The 3D1 lifetime directly determines the dynamic
contribution to the Sr lattice clock blackbody radiation shift
[50], its currently largest systematic uncertainty [52]. This
uncertainty can be directly improved by a new direct
measurement of τ1P1 in combination with our results and
Ref. [26]. Our measurements show that direct measure-
ments of atomic lifetimes and improvements to atomic
structure calculations will be essential in bringing optical
frequency standards to the 10−19 level.
In conclusion, we have demonstrated state-dependent

optical lattices for the clock states of strontium at the tune-
out wavelength for its ground state. With a new spectro-
scopic method, we achieved a record suppression of the
lattice depth for the ground state of more than 4 orders of
magnitude. Our method can be applied to thermal gases of
atoms, molecules [53], or to trapped ions. As a modulation
technique for trapped particles, the method benefits from
suppression of systematic errors and long integration times.
Using our technique in three-dimensional optical lattices in
combination with band mapping [54] will enable measure-
ments of excited state tune-out wavelengths, such as the
tune-out wavelength for the 3P0 state around 633 nm [12],
even in the presence of interactions. We have demonstrated
high-fidelity, state-dependent control of the strontium
optical qubit. Combining our results with single-site
addressing and control [55] removes the main obstacle
for the realization of quantum computation and quantum
simulation schemes with two-electron atoms [7]. Finally,
our Letter creates new opportunities to use state-dependent
optical lattices for quantum simulations of nanophotonics
[13–15] and quantum chemistry [16].
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