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I show that particle collider experiments on relativistic nuclear collisions can serve as direct probes of the
deformation of the colliding nuclear species. I argue that collision events presenting very large
multiplicities of particles and very small values of the average transverse momentum of the emitted
hadrons probe collision geometries in which the nuclear ellipsoids fully overlap along their longer side. By
looking at these events one selects interaction regions whose elliptic anisotropy is determined by the
deformed nuclear shape, which becomes accessible experimentally through the measurement of the elliptic
flow of outgoing hadrons.
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Introduction.—The majority of atomic nuclei are not
spherical in their ground states, but present a quadrupole
deformation. This property of nuclei cannot be revealed
directly in experiments [1], and our knowledge of it comes
mostly from the results of theoretical calculations [2] which
are rarely confronted with experimental data. In this Letter,
I propose to use nucleus-nucleus collision experiments at
relativistic energies as a probe of nuclear structure.
Relativistic nuclear collisions are performed in theworld’s

largest particle accelerator facilities, the BNL Relativistic
Heavy Ion Collider (RHIC) and at the CERN Large Hadron
Collider (LHC). By smashing two nuclei against each other
at very high energy, one produces the quark-gluon plasma
(QGP) [3], the high-temperature state of strong-interaction
matter. The QGP created in a nuclear collision exists for a
very short time (≈10−22 s) before transforming into thou-
sands of particles that are observed in the detectors.
Remarkably enough, the distribution of these particles in

momentum space and their mutual correlations [4] carry
information about the geometric shape of the colliding
nuclei. The reason is that the QGP is a hydrodynamic
medium [5], whose dynamics is governed by pressure-
gradient forces:

F ¼ −∇P; ð1Þ

where F is the force per unit volume and∇P is the pressure
gradient. The QGP is created at rest, and set in motion by
these pressure gradients, which are determined by the
geometry of the system. This geometry is in turn deter-
mined by how two nuclei overlap at the time of the
interaction, a feature which depends on the spatial ori-
entations of the nuclear axes (see Fig. 1).
These orientations are random, and generate nontrivial

geometries of overlap, that leave distinct signatures in the
distributions of final-state particles. It has already been
argued that several results obtained in collisions between

deformed nuclei (238Uþ 238U and 129Xeþ 129Xe collisions)
can only be explained by taking into account their quadru-
pole deformation [6–9]. However, these results were
obtained by averaging the datasets over all possible
orientations of the nuclear axes, thus reducing the sensi-
tivity of the observables to the nuclear structure.
Here I present a procedure for analyzing nucleus-nucleus

data that allows one to look at frozen collision geometries
where both nuclear axes are perpendicular to the collision
axis. In these configurations the shape of the QGP closely
follows the shape of the colliding bodies, and the angular
distribution of emitted particles becomes a sensitive probe
of the deformed nuclear shapes.
Freezing nuclear orientations.—The density of matter in

an axially symmetric nucleus with a static quadrupole
deformation can be written in the form of a two-parameter
Fermi distribution:

FIG. 1. A bunch of deformed nuclei accelerated in a beam pipe.
The beam axis runs along the z axis. Individually, each nucleus
has a random orientation in space, determined by a polar angle θ
and an azimuthal angle ϕ.
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ρðx0; z0Þ ¼ ρ0

1þ expf1a ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jx0j2 þ z02
p

− Rð1þ βY20Þ�g
; ð2Þ

where z0 is the axis of the nucleus, x0 is a coordinate in the
plane orthogonal to z0, and spherical symmetry is broken by
the spherical harmonic that carries a dependence on the
angle Θ between x0 and z0, Y20 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið5=16πÞp ð3cos2Θ − 1Þ.
a is the diffusiveness of the nucleus, R is its average radius,
and ρ0 is the density of nuclear matter. The quadrupole
deformation of the nuclear ellipsoid is controlled by the
parameter β. A nucleus is spherical for β ¼ 0, prolate for
β > 0, and oblate for β < 0.
Now, inject such a nucleus in the beam pipe of a particle

collider. The laboratory frame is defined by the beam axis z
and the plane orthogonal to it x, the so-called transverse
plane. As illustrated in Fig. 1, each nucleus in the beam
pipe is randomly oriented in space, so that the intrinsic
frame of the nucleus and the laboratory frame differ in
general by polar tilt θ and by an azimuthal spin ϕ. The
geometry of the collision of two nuclei, say A and B, in the
laboratory frame is therefore determined by two polar tilts,
θA and θB, and two azimuthal spins, ϕA and ϕB [10,11].
I describe now a method for analyses of nucleus-nucleus

data that permits one to isolate configurations where θA ¼
θB ¼ π=2 and ϕA ¼ ϕB. I exploit the hydrodynamic nature
of the QGP, recalling that the medium created in high-
energy collisions is approximately invariant under longi-
tudinal boosts [12], so that one can solve its dynamics only
in the transverse plane, in the longitudinal slice at z ¼ 0,
where 0 is the interaction point of two nuclei.
The energy per particle in a thermodynamic medium is

proportional to the temperature of the system. In the
ultrarelativistic limit, the energy of a particle coincides
with its momentum. Therefore, when a QGP decouples to
particles one naturally expects that the transverse momen-
tum, pt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
x þ p2

y

q

, carried by these particles is propor-
tional to the temperature of the medium. Suppose now to
have two QGPs presenting the same total entropy but
different volumes. The one which is smaller in size is
denser, has larger temperature, and therefore decouples to
particles that carry more transverse momentum to the final
state [13,14]. This simple argument is confirmed by
hydrodynamic simulations [15,16], where, at fixed total
entropy, the initial size of the system R and the average
transverse momentum of the produced hadrons p̄t are
strongly anticorrelated.
Now, let us have a look at Fig. 2. Body-body collisions

present θA ¼ θB ¼ ðπ=2Þ, while tip-tip collisions present
θA ¼ θB ¼ 0. The area of overlap is larger in body-body
collisions. If one takes R as the radius of the system
weighted by the entropy density sðxÞ,

R2 ¼
R

x jxj2sðxÞ
R

x sðxÞ
; ð3Þ

then, at fixed total entropy, body-body collisions present
the larger values of R, and therefore smaller values of p̄t
than tip-tip collisions. This result provides an experimental
handle on the orientation of the colliding nuclei. First,
choose events at fixed total entropy, which can be done
experimentally by selecting events that present the same
number of emitted particles, ormultiplicity. Then, sort these
events according to the p̄t of the produced hadrons. Events
with abnormally low values of p̄t correspond to fully
overlapping body-body collisions.
I perform an explicit application of this selection

procedure in simulations of the collision process. I use
the phenomenologically successful TRENTo model of initial
conditions [17]. In this model, the profile of entropy density
created in the interaction of nuclei A and B behaves like
sðxÞ ∝ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TAðxþ b=2ÞTBðx − b=2Þp

, where TAðBÞðxÞ is a
Lorentz-boosted matter density, given by the integral of
Eq. (2) along the beam axis z and b is the impact parameter
of the collision. TRENTo includes the effect of fluctuations,
both at the level of the positions of the colliding nucleons as
well as in the amount of entropy that they produce. The
entropy produced by a participant nucleon is distributed
according to a Γ distribution, which is tuned to data
following the comprehensive phenomenological applica-
tions of Refs. [18,19].

TRENTo provides, in each event, the value of R. To
express my results as function of quantities that are
measurable, I use the effective hydrodynamic framework
of Refs. [14,20] to convert the relative variation of R into an
approximation of the relative variation of p̄t as follows:

δp̄t

hp̄ti
¼ −3c2s

δR
hRi ; ð4Þ

where δp̄t ¼ p̄t − hp̄ti, δR ¼ R − hRi, and angular brack-
ets denote statistical averages in the multiplicity class.
I recall that p̄t is the average transverse momentum in one
event. The speed of sound of the quark-gluon plasma c2s

FIG. 2. Tip-tip and body-body configurations of nonspherical
nuclei colliding at zero impact parameter. On the right are shown
resulting transverse areas of overlap at fixed z.
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appears in the equation as it tells us how an increase in
temperature translates into an increase in pressure in the
medium. Following Ref. [14], I shall use c2s ≈ 0.25 at LHC
energies, and that c2s ≈ 0.19 at RHIC energies.
I simulate 2 × 107 238Uþ 238U collisions (see Table I).

I restrict my analysis to collisions occurring at very small
impact parameter (central collisions), where the geometry
of the system is mostly determined by the orientation of the
colliding bodies. Experimentally, the impact parameter is
not an observable quantity, and the centrality of a collision
is quantified by the amount of produced particles. Central
collisions correspond to events displaying very large
multiplicities in the final state. In the TRENTo model, this
amounts to select events that present a very large initial
total entropy. Therefore, I focus on a narrow class of
events in the high-entropy tail of my sample, specifically,
the 0–0.5% most central events.
I first show the dispersion of p̄t around its average value

in the upper panel of Fig. 3. We note that the distribution is
skewed, with larger values of probability in the low-p̄t tail.
As it will be made clear below, this is a consequence of the
positive value of β.
Moving on to the middle panel of Fig. 3, for each bin of

the previous histogram I plot the values of sin θ as a
function of p̄t for both nuclei. The sinus grows very close to
unity at low p̄t. This indicates that the events belonging to
the low-p̄t tail present θA ¼ θB ¼ π=2, confirming our
expectations. Note that at large p̄t the sine does not flatten
around 0, which would correspond to the limit of tip-tip
events, θA ¼ θB ¼ 0. Closer investigation reveals that, in
fact, the large-p̄t tail selects events with large impact
parameter, rather than tip-tip configurations.
Finally, in the lower panel of Fig. 3, I compute the

alignment of the two nuclei in the azimuthal plane by
evaluating cos 2ðϕA − ϕBÞ. At average and large transverse
momentum, the correlator is consistent with zero.
Remarkably enough, the correlator approaches unity as
one moves to lower p̄t values, which implies almost perfect
alignment between azimuthal angles, i.e., ϕA ¼ ϕB.
In summary, the low-p̄t tail of ultracentral events selects

fully overlapping body-body collisions. I now show how
the nuclear deformation can be probed experimentally in
this selection of events.
Revealing nuclear deformation.—If the region of nuclear

overlap has an elliptic shape like in the upper panel of
Fig. 2, pressure gradients are larger along x than along y,

due to the smaller transverse size [25]. Equation (1)
predicts, then, an asymmetry in the forces [26],

Fx > Fy; ð5Þ

so that more momentum is built along x than along y. This
phenomenon is called elliptic flow. Experimentally, it
manifests as an angular imbalance in the momentum
carried by the produced particles, corresponding to a
cosð2ϕÞ modulation of the azimuthal particle spectrum:

dN
dϕ

∝ 1þ 2v2 cosð2ϕÞ; ð6Þ

where v2 quantifies the magnitude of elliptic flow.
Let us go, then, back to Fig. 2. While tip-tip collisions

produce a quark-gluon plasma with a circular background
geometry, body-body collisions have a manifest elliptical
asymmetry, due to the deformation of the colliding bodies.
Equation (5) implies, then, that the largest elliptic flow is

TABLE I. Parameters used in Eq. (2) for different species.

Species a (fm) R (fm) β

238U [21] 0.60 6.80 0.30
208Pb [22] 0.55 6.62 0
197Au [22] 0.53 6.40 −0.13 [23]
129Xe [24] 0.59 5.40 0.18 [24]

FIG. 3. Effect of sorting ultracentral Uþ U collisions accord-
ing to their p̄t. In the uppermost panel is shown the distribution of
p̄t around its average. In each bin of the histogram, I evaluate the
average of the sine of the polar angles of the colliding nuclei
(middle) and the average alignment between the azimuthal angles
of the nuclei (lowermost panel).
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achieved in fully overlapping body-body collisions.
Combining this argument with the previous observation
that fully overlapping body-body collisions are those
presenting abnormally small values of p̄t, I conclude that
nuclear deformation yields an enhancement of elliptic flow
in the low-p̄t tail of ultracentral events.
I verify the validity of this picture in the TRENTO model.

I shall not, though, compute elliptic flow by means of full
hydrodynamic simulations. I use the fact that elliptic flow is
a response to the initial eccentricity of the medium [27]:

ε2 ¼
j Rx x2sðxÞj
R

x jxj2sðxÞ
; ð7Þ

where x2 in the numerator is here in complex notation,
x2 ¼ ðxþ iyÞ2. Hydrodynamic simulations [28] show that
the following relation holds to a very good approximation
in central nucleus-nucleus collisions:

v2 ¼ κ2ε2: ð8Þ
κ2 is a response coefficient that depends on the properties of
the medium, such as its viscosity. Its value has been
determined at both RHIC and LHC energies.
Within the same batch of events used in Fig. 3, I calculate

ε2 in Uþ U collisions as a function of p̄t, and I rescale it by
a factor κ2 ¼ 0.16 [19] to obtain the final-state elliptic flow.
The result is shown as full circles in Fig. 4. The intuitive
prediction is confirmed. Elliptic flow is enhanced in the
low-p̄t region, toward the limit of fully overlapping body-
body collisions. Note that v2 at low p̄t reaches a value close
to βκ2, which implies ε2 ≈ β. This is not a coincidence. The
rms eccentricity can in general be decomposed as

ffiffiffiffiffiffiffiffi

hε22i
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2g þ σ2
q

, where σ is the p̄t-independent eccentricity

fluctuation, while εg is the contribution from the intrinsic

elliptic geometry of the system, which in these results
originates entirely from the deformation of the colliding
bodies. In body-body events, one has in fact εg ≈ β, which
implies ε2 ≈ β when the magnitude of deformation is larger
than σ, which is the case in U-U collisions.
InFig. 4, I present aswell the results of TRENTo simulations

of other systems, whose nuclear density parameters are listed
in Table I. The enhancement of elliptic flow at low p̄t is
observed, as expected, in collisions of prolate 129Xe nuclei
(κ2 ¼ 0.23 [18]), recently collided at the LHC. In collisions
of spherical 208Pb nuclei (κ2 ¼ 0.24 [18]), v2 is instead
essentially flat,with only a slight increase ofv2with p̄t due to
the increasing impact parameter. The same trend is observed
in collisions of mildly oblate 197Au nuclei (κ2 ¼ 0.16 [19]).
Note that for oblate nuclei (β < 0), the enhancement of
elliptic flow should occur in the large-p̄t tail. However, with
β ¼ −0.13 the effect is not visible, as it is smeared by the
sizable impact parameter.
Note however that the results presented in Fig. 4 are

meant to provide a qualitative description of future exper-
imental data, and should not be intended as quantitative
predictions, for two main reasons. First, they assume that p̄t
and R are in a one-to-one correspondence. In hydrody-
namics this is a good approximation [16], but this relation is
smeared by entropy density fluctuations in the initial state,
which will eventually reduce the correlations observed in
Fig. 4. Analogously, the measurement proposed in this
Letter requires the evaluation of p̄t on an event-by-event
basis. Since experimentally one observes a finite number of
particles of order N ≈ 103, the determination of p̄t in a
single event is affected by statistical fluctuations which are
naturally of order 1=

ffiffiffiffi

N
p

. These fluctuations are essentially
as large as the dynamical fluctuation of p̄t studied here
(e.g., in Fig. 3, top panel), and they will yield an additional
flattening of the correlations plotted in Fig. 4. The
inclusions of these effects will therefore be crucial for a
quantitative description of future experimental data.
Conclusion.—In summary, the selection of events based

on p̄t allows one to isolate fully overlapping body-body
collisions. The elliptic flow of the hadrons emitted from
such configurations carries information about the deforma-
tion of the colliding species, thus paving the way for a new
phenomenology of nuclear structure at particle colliders. If
confirmed by experiments, the present method will indeed
allow us to perform new experimental tests of ab initio
calculations of nuclear structure. Combined in particular
with the great versatility of RHIC, it will permit us to reveal
the quadrupole deformation of a potentially very large
number of stable nuclides.
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FIG. 4. Elliptic flow as a function of the average transverse
momentum in ultracentral collisions of 238U, 208Pb, 197Au, 129Xe
nuclei. In each plot, by moving from right to left one gradually
freezes the orientation of the colliding bodies toward the limit of
body-body collisions. The horizontal dashed lines indicate the
values of v2 ¼ βκ2 (i.e., ε2 ¼ β).
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