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There is a simple bound on how fast the entanglement entropy of a subregion of a many-body quantum
system can saturate in a quench: tsat ≥ R=vB, where tsat is the saturation time, R the radius of the largest
inscribed sphere, and vB the butterfly velocity characterizing operator growth. By combining analytic and
numerical approaches, we show that in systems with a holographic dual, the saturation time is equal to this
lower bound for a variety of differently shaped entangling surfaces, implying that the dual black holes
saturate the entanglement entropy as fast as possible. This finding adds to the growing list of tasks that
black holes are the fastest at. We furthermore analyze the complete time evolution of entanglement entropy
for large regions with a variety of shapes, yielding more detailed information about the process of
thermalization in these systems.
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Introduction.—The time evolution of entanglement
entropy (EE) is an interesting detailed probe of thermal-
izing many-body systems [1–7]. By causality, the EE
S½AðtÞ� of a subregion A can never saturate to its thermal
equilibrium value faster than a time tsat ≥ tLC, with tLC the
time to the tip of the past light cone of region A.
Geometrically, tLC ¼ R=c with R the radius of the largest
inscribed sphere in A and c the speed of light [8]. Using
insight from chaotic operator growth [9,10], the bound on
the saturation time can be improved to tsat ≥ R=vB [11],
with vB the butterfly velocity characterizing the spreading
footprint of operators. This improved bound is the main
interest of this Letter.
Solving for the time evolution of EE is a very challenging

problem. Results are available in special solvable examples:
two-dimensional conformal field theories [12,13], free
theories [14,15], random quantum circuits [16–18], and
holographic gauge theories [3–5,11,19–23]. Recently, much
progress has been made in understanding the process of EE
growth in generic chaotic systems in a “hydrodynamic” limit
R; t ≫ tloc (with t=R fixed), where tloc is the local thermal-
ization timescale. For any region, the entropy starts to grow
linearly according to the universal law [3–6,12,13]

S½AðtÞ� ¼ sthvEareað∂AÞtþ � � � ; ð1Þ

whereS½AðtÞ� is thevacuum subtractedEEof regionAðtÞ, sth
is the thermal entropy density, and the entanglement velocity
vE is defined by this equation. In the hydrodynamic limit, the
growth of EE as a function of the time can be described by an
effectivemembrane theory [17,24,25], which states that (the
leading piece of) S½AðtÞ� after a quench at t ¼ 0 in any
chaotic system is computed by a membrane minimizing the
functional

S½AðtÞ� ¼ sth

Z
t

0

darea
EðvÞffiffiffiffiffiffiffiffiffiffiffiffi
1−v2

p ; v≡ ðnμ t̂μÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðnμt̂μÞ2

q ; ð2Þ

where the timelike membrane stretches between two planes
in the d-dimensional Minkowski spacetime that the system
lives in: It is anchored at t on the upper face on the entangling
surface ∂AðtÞ and ends perpendicularly (on an arbitrary
shape) on the lower plane at t ¼ 0. Here, nμ is its local unit
normal (n2 ¼ 1), and t̂μ ¼ ð1; 0Þ is the timelike unit vector,
and the “velocity” v is determined by their angle; see Fig. 1.
Since the membrane is timelike it follows that jvj ≤ 1. EðvÞ
is the Lagrangian referred to as the “angle-dependent
membrane tension” that we elaborate on below.
The functional was originally presented based on ana-

lytic results on random quantum circuits [17,24], where the
membrane is to be thought of as a coarse-grained cut
through the tensor network representing the evolving wave
function. In holographic gauge theories, the EE is given by
the area of an extremal surface in the dual spacetime that
ends on ∂AðtÞ on the spacetime boundary (that hosts the
dual gauge theory) [19–21]. In the hydrodynamic limit,
it was shown in Ref. [25] that the holographic extra
dimension can be integrated out, giving the membrane
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theory (2). In the holographic case, the membrane is given
by the projection of the extremal surface computing EE in
the gravitational description onto the spacetime boundary
along constant infalling time.
These complementary ways of thinking about the mem-

brane add to the intriguing connections between cuts
through tensor networks and holographic extremal surfaces
pioneered in Refs. [3,10,26–29]. The membrane theory can
be generalized in many directions, which demonstrates its
robustness [30–35]. Since it applies equally to very differ-
ent systems—holographic gauge theories and random
quantum circuits—and since it has all the ingredients to
be adapted to all chaotic systems, we take the view that it is
a universal effective theory of EE dynamics in much the
same way as hydrodynamics describes the evolution of
conserved charge densities. The derivation of the effective
membrane theory for general chaotic systems however
remains an open challenge.
Specifying EðvÞ.—Like the equation of state or transport

coefficients in hydrodynamics, the angle-dependent mem-
brane tension EðvÞ depends on the theory and conserved
charges, but not on other details of the state whose EE
dynamics we are studying. EðvÞ obeys the following
general constraints: It is an even function of v, monoton-
ically increasing for v > 0, convex, interpolates between
Eð0Þ ¼ vE and EðvBÞ ¼ vB, and is tangent to the 45° line at
vB, E0ðvBÞ ¼ 1.
In random quantum circuits, EðvÞ depends on the

structure of the circuit: In one simple 1þ 1D example
with a large on-site Hilbert space, EðvÞ ¼ 1

2
ð1þ v2Þ [17],

but no results are known for higher dimensions. In
holography, EðvÞ repackages the dual spacetime geometry.
A field theory quench is dual to a spacetime in which a
black hole forms from collapse. The equilibrium black hole
does not depend on the details of the quench, only the
conserved charges, and this is the region of spacetime that
determines EðvÞ. Its metric can be written as

ds2 ¼ 1

z2
½−aðzÞdt2 − 2dtdzþ dx⃗2�;

aðzÞ ¼ 1 −Mzd þQ2z2ðd−1Þ; ð3Þ

where ðt; x⃗Þ are the field theory coordinates and z is the
holographic extra dimension, and as an example, we chose
a family of charged black holes withM the mass and Q the
charge, which map to the energy and charge density of the
state in the field theory. Then, EðvÞ is given parametrically
by the formula

fvðzÞ; E½vðzÞ�g ¼
( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aðzÞ − za0ðzÞ
2ðd − 1Þ

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a0ðzÞ

2ðd − 1Þz2d−3
s )

;

ð4Þ

where z ∈ ½0; z�� and z� is the value for which vðz�Þ ¼ 0
[25]. In this Letter, we will study in detail the case d ¼ 4,
Q ¼ 0, describing charge neutral quenches in 4D holo-
graphic field theories, for which Eq. (4) evaluates to

EðvÞ ¼ vE
ð1 − v2Þ1=4 ; vE ¼

ffiffiffi
2

p

33=4
; vB ¼

ffiffiffi
2

3

r
; ð5Þ

see Fig. 1 (right) [36]. On occasion, we will present results
for charged black holes, whose dynamics is expected to be
slower due to the decrease of the size of the available
Hilbert space [37]. Our methods and (most of our) results
straightforwardly extend to other EðvÞ’s and hence con-
jecturally to any chaotic system. While currently the only
higher-dimensional examples for EðvÞ come from holog-
raphy, once new analytic or numerical EðvÞ functions
become known for nonholographic systems, it will be very
interesting to revisit our results for them.
In the following, we compute the time evolution of EE in

the membrane theory (2) with EðvÞ given in Eq. (5) (and
some charged generalizations) for a variety of entangling
regions, which compute the EE in holographic field
theories in the hydrodynamic regime. Besides determining
the full time evolution, we analyze the saturation time in
detail.
Analytic results.—We briefly review the analytic solution

of the membrane theory for symmetric shapes. For A a strip
the membrane is a straight plane stretching between the
t ¼ 0 and t time slices. Evaluating Eq. (2) for this
membrane gives linear growth with slope sthvEarea½∂A�
until saturation, consistent with Eq. (1). The saturation time
for a strip of width 2R is hence tsat ¼ R=vE ≡ tE. For
spherical A, the action reduces to

S½AðtÞ� ¼ 4πsth

Z
t

0

dsρ2ðsÞE½_ρðsÞ�; ð6Þ

where s is the time coordinate 0 ≤ s ≤ t, and we describe
the membrane with a radial coordinate ρðsÞ [hence,
v ¼ _ρðsÞ]. Minimizing Eq. (6) is a one-dimensional
classical mechanics problem, and can be straightforwardly
solved using energy conservation. S½AðtÞ� is shown in
Fig. 4 (as the r ¼ 1 curve) for the membrane tension

1.0 0.5 0.5 1.0
v
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v

FIG. 1. (Left) Amembrane (red) anchored on an ellipseA shown
together with normal vectors (green), the timelike unit vector, and
the two planes in Minkowski space. The vB light sheet over the
same ellipse (a membrane with v ¼ vB) is drawn in blue and just
touches the plane at t ¼ 0. (Right) Themembrane tension function
of Eq. (5) (red) and a charged quench for comparison (blue). The
dashed black line is at 45°. They touch at v ¼ vB.
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corresponding to the neutral black hole (5). The curve ends
at tB: The corresponding membrane has vðsÞ ¼ vB and
hence is a vB light sheet. The problem for a cylinder
subregion is solved by replacing 4πρ2ðsÞ → 2πLρðsÞ in
Eq. (6). Remarkably, the cylinder also saturates at tsat ¼ tB;
see Fig. 4 (as the r ¼ ∞ curve). Below we will find that
shapes that interpolate between the sphere and cylinder
saturate EE at tB, while those that interpolate between the
sphere and the strip have tB ≤ tsat ≤ tE.
We have also analyzed charged quenches whose EE

dynamics is governed by EðvÞ computed from Eq. (4). We
find three regimes as a function of q≡Q=M3=4: For
0 ≤ q ≤ 0.38, both the sphere and the cylinder (and we
expect that all the shapes that interpolate between them)
have tsat ¼ tB; for 0.38 ≤ q ≤ 0.61, the sphere has tsat ¼ tB,
while the cylinder has tsat > tB (and hence, among the
shapes that interpolate between them, there should be an
open set with tsat ¼ tB), while for 0.61 ≤ q, all shapes have
tsat > tB. We present a detailed discussion of S½AðtÞ� for a
spherical region from this last regime of q, for q ¼ 0.62 in
the Supplemental Material [38].
For more general shapes, the minimal membrane will be

solved numerically in the next section, but it is possible to
obtain rather constraining analytic upper bounds on the
entropy [11]. In the framework of the membrane theory (2),
this bound corresponds to considering a variational surface
consisting of two parts joined at t ¼ t0: a “light sheet" part
of slope vB and a vertical tube with Eðv ¼ 0Þ ¼ vE. We get
a tight upper bound by minimizing in t0 the total membrane
action

Smax½AðtÞ� ¼ sth min
0≤t0≤minðt;tBÞ

½fvolðAÞ − volðA0Þg

þvEareaðA0Þt0�; ð7Þ
where A0ðt0Þ is the past butterfly domain of dependence of
AðtÞ at time t0, i.e., the set of points in region A that are
farther from ∂A than vBðt − t0Þ. We show Smax½AðtÞ� on

Fig. 3 together with the numerical results for S½AðtÞ�. The
bounds are very close to the actual results (see also
Ref. [11] for similar results for spherical regions).
Numerical results.—In general, the minimization of the

action (2) cannot be solved analytically, but it is possible to
start with some initial surface and gradually relax this
surface to a (local) minimal solution. For this, we used
SURFACE EVOLVER [39], which uses a triangulation of the
surface to minimize some energy functional. We imple-
mented this in 3D for ellipses and stadia (consisting of two
half-circles connected by lines) having a ratio r between
the long and short axes. In 4D, we kept one rotational
symmetry by rotating these surface about the long
axis [Fig. 2 (top)] or short axis [Fig. 2 (bottom)]. The
numerical implementation is included in the Supplemental
Material [38].
We now briefly describe some general features of S½AðtÞ�

and the membranes computing it shown in Figs. 2–4. In the
early time regime captured by Eq. (1), the membrane has
v ≈ 0; i.e., it is a tube stretching between the upper and
lower ends of the spacetime slab. After this early time
regime, S½AðtÞ� starts to curve, and smoothly saturates to
the thermal value S½AðtÞ� ¼ sthvolðAÞ at some saturation
time tsat. At intermediate times, the membrane generically
forms cusps, most visible on Fig. 2. Since the action
depends on v but not its derivatives, the jump of v at the
cusp does not cause a divergence in the action.
Saturation time.—A remarkable feature of Figs. 3 (left)

and 4 (top) is that EE saturates at the butterfly time
tB ¼ R=vB, where R is the radius of the largest inscribed
sphere inside the entangling surface. We found the same
feature in prolate ellipsoids; the numerical results are
included in the Supplemental Material [38]. Independent
of the validity of the membrane theory, Ref. [11] gave an
argument that the bound tsat ≥ tB holds in any many-body
system. The saturation of this bound is our most important
result and allows us to conclude that neutral (and

FIG. 2. Detailed illustration of the relevant membranes for rotated stadia with short-to-long ratio of 2.5 (top) and 0.4 (bottom) at
t ¼ 1.22, just before the butterfly time tB ¼ 1=vB ≈ 1.2247. The largest inscribed sphere has radius R ¼ 1. Curiously, even for this
nontrivial shape, the EE saturates as fast as possible for the 2.5 case.
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moderately charged) black holes often saturate entangle-
ment entropy the fastest, where “often” indicates a large
class of shapes.
We now explain the often qualifier of this statement. It is

not true that for all shapes the saturation time is as fast as
possible. For the analytically solvable case of the strip, we
get tsat ¼ tE > tB. (Recall that tE ¼ R=vE.) For the
squashed stadium of Figs. 2 and 3 and also other stadia
on Fig. 4, as well as oblate ellipsoids (see the Supplemental
Material [38]), we find tsat > tB. In the case of the stadia,
this can be proven analytically: We show that even
Smax½AðtÞ� saturates later than tB, and hence, so does
S½AðtÞ� (see Fig. 3 for an example). In the inset of
Fig. 4, we show the analytic lower bound on the saturation
time that interpolates between tB and tE together with the
numerical results. That for r → 0 we get tsat ¼ tE is
expected, since in this limit the squashed stadium becomes
a strip. We note that in the membrane theory, one can prove
a simple upper bound on the saturation time tsat ≤ tE [25],
so the family of shapes that we consider realize all possible
saturation times.
It would be bold to conclude that tsat ¼ tB for a large

family of shapes based solely on numerical data. We now
make our case stronger by presenting a semianalytic
argument to this effect. Interestingly, we can establish
analytically that at t ¼ tB, the vB light sheet over the
entangling surface is a (locally) minimal surface [25]. [This
is also a surface that is contained in the set of variational
surfaces in Eq. (7) for t0 ¼ 0.] In some cases, it is also the
global minimum, and we have tsat ¼ tB; see Fig. 2. In other
cases, as shown on Fig. 3, lower left corner, we see that
there is a variational surface with t0 > 0 that gives lower
entropy (red line at t ¼ tB), even though the numerical
membrane gives even lower entropy (black line). At some
time tsat;var > tB, the variational surface gives a larger
entropy than the thermal value, after which we continue
the (disfavored) variational estimate as dashed line. It is this
transition that gives a lower bound on the actual saturation
time, as shown in the inset of Fig. 4. At an even later time, it
is not possible to connect the two surfaces with a regular
minimal variational membrane; we indicated the smooth
transition from that point to the vB light sheet (black circle)
by a dashed green line in Fig. 3.

Numerically, we were only able to follow the favored
branch, but we believe that the disfavored branch also
exists. These two branches are the only ones that give
membranes that connect the two ends of the spacetime slab.
On top of these, the membrane theory also allows for a
horizontal membrane that gives S½AðtÞ� ¼ sthvolðAÞ. This
is the horizontal line on all figures, colored blue on Fig. 3.
For t > tsat it is the minimal membrane.
The existence of multiple branches of minimal mem-

branes is the mechanism by which the vB light sheet fails to
be the relevant membrane at t ¼ tB. Another piece of
evidence for this mechanism comes from the analytic study
of spherical entangling surfaces for membrane tensions
EðvÞ that result from a charged quench in holographic
theories, where a favored and disfavored branch was
seen in Ref. [22] (for completeness, included in the
Supplemental Material [38]). From understanding the
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FIG. 4. See Fig. 2 for illustrations of the rotated stadia. Here we
show for several shapes the EE. The analytically solvable sphere,
cylinder, and strip are shown in black and correspond to ratios 1,
0, and ∞, respectively. The inset shows the saturation time
(colored dots) for rotated stadia, together with the analytic lower
bound (solid blue) coming from Eq. (7) (see the red line in Fig. 3
for an example with r ¼ 0.4).

FIG. 3. Time evolution of the EE for stadia of Fig. 2. The time evolution obeys the analytic bound of Eq. (7) plotted by a red solid line
when they are minimal and dashed where they become nonminimal. The vB light sheet at tB is indicated by a black circle, which lies at
the end of a dashed green line representing a disfavored branch of variational membranes.
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mechanism for how we get tsat > tB, it follows that we only
have to understand if the two branches exist or not. In the
latter case, we get tsat ¼ tB. In this Letter, we decide this
question numerically.
We also note that depending on which situation we are

in, the slope of the curve, ðd=dtÞS½AðtÞ�jt¼tsat ¼ finite for
the case tsat > tB, and zero when tsat ¼ tB (see Fig. 3).
Discussion.—In this Letter, we studied the EE S½AðtÞ� in

the hydrodynamic regime, of large regions at late times, in
the membrane effective theory proposed to capture the
dynamics of entanglement in all chaotic systems. By
focusing on the membrane tension function EðvÞ given
in Eq. (5), we specialized to the case of 4D holographic
gauge theories and neutral quenches, but all our methods
generalize to any theory, once EðvÞ is provided as an input.
We also derived some results for charged quenches in the
same theories.
One important problem we leave for the future is how to

determine whether tsat ¼ tB or larger analytically without
having to solve for the minimal membrane numerically.
This may be possible by perturbing around the vB light
sheet membrane to decide if it is on the dominant or
disfavored branch, as in Figs. 2 or 3, respectively.
While in the case of holography, we have a way of

computing not just the leading piece in the hydrodynamic
limit, but the exact entropy (using the holographic surface
extremization prescription [19–21]). Even in this context
there are many advantages of using the membrane theory:
The simplified description allows for the identification of
features that survive the hydrodynamic limit, enables
the understanding of near saturation behavior, and the
numerical solution of the relatively simple-looking surface
extremization problem is prohibitive in the presence of a
large-scale separation R; t ≫ β. In generic chaotic theories,
the determination of the exact entropy is out of reach, but
one may hope that in the future we will learn how to
determine EðvÞ from other data characterizing the theory.
One hint that this may be possible is that we can determine
the special point EðvBÞ ¼ vB by studying out-of-time-order
correlators. Another way to exploit the power of the
membrane theory is to determine EðvÞ from determining
S½AðtÞ�, e.g., for a sphere in numerics [see Ref. [24] for a
related numerical determination of EðvÞ] or in the future in
experiments (see Ref. [7] for early experimental work),
which then yields infinitely many new predictions for other
shapes.
In the future, we can use the numerical methods

developed here to study the EE in inhomogeneous quench
setups, where the membrane theory is coupled to the
hydrodynamic degrees of freedom [34]. One fascinating
application would be to understand whether signatures of
turbulent fluid flows show up in EE.
Our most interesting finding is that moderately charged

black holes produce EE dynamics with saturation time
tsat ¼ tB for elongated shapes that interpolate between a

sphere and the cylinder, which is the fastest possible
allowed by quantum mechanics [11]. This adds to the list
of things black holes excel at: They are also fastest
scramblers [9,40,41], have Planckian equilibration time
[42,43], and are conjectured to have the lowest sheer
viscosity-to-entropy-density ratio in nature [44].
To highlight how efficient black holes are at saturating

entropy, we conclude by contrasting their chaotic dynamics
to those of free field theories (in Gaussian states), whose EE
dynamics is expected to be modeled by the quasiparticle
theory [12–15]. As shown in Ref. [14], this model gives
tsat ¼ dmax=2, where dmax is the largest distance between
two points of the subregion. The intuition behind this result
is simple: This is the time when one member of any
quasiparticle pair free streaming at the speed of light has
left the subregion A. Since we have to associate vB ¼ 1
with these systems, only spheres can have tsat ¼ tB, and all
elongated shapes give longer saturation times tsat > tB with
tsat ¼ ∞ for the cylinder.
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