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We develop a strategy for tensor network algorithms that allows to deal very efficiently with lattices of
high connectivity. The basic idea is to fine grain the physical degrees of freedom, i.e., decompose them into
more fundamental units which, after a suitable coarse graining, provide the original ones. Thanks to this
procedure, the original lattice with high connectivity is transformed by an isometry into a simpler structure,
which is easier to simulate via usual tensor network methods. In particular this enables the use of standard
schemes to contract infinite 2D tensor networks—such as corner transfer matrix renormalization
schemes—which are more involved on complex lattice structures. We prove the validity of our approach
by numerically computing the ground-state properties of the ferromagnetic spin-1 transverse-field Ising
model on the 2D triangular and 3D stacked triangular lattice, as well as of the hardcore and softcore Bose-
Hubbard models on the triangular lattice. Our results are benchmarked against those obtained with other
techniques, such as perturbative continuous unitary transformations and graph projected entangled pair
states, showing excellent agreement and also improved performance in several regimes.
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Introduction.—During the past decade there has been
a rapid development of tensor network (TN) states and
numerical methods [1–5] for simulating strongly correlated
quantum many-body systems. These are mathematical
objects which use the knowledge about the amount and
structure of entanglement in quantum many-body states in
order to reproduce the state accordingly. TN methods use
such objects as Ansätze to simulate quantum lattice systems
in different regimes, and have been remarkably successful
[6–14]. Inspiringly, TN states also show up in other
disciplines, such as quantum gravity [15], artificial intelli-
gence [16,17], and even linguistics [18].
Despite being extremely versatile, TNs are not free from

limitations, though. The most obvious one is the ability
to capture the expected structure of entanglement in the
TN Ansatz, i.e., to incorporate the correct scaling of the
entanglement entropy. The amount of entanglement is also
a limitation itself, where one of the key parameters of the
TN, the so-called bond dimension, may be just too large to
simulate the system at hand when there is too much
entanglement in the quantum state. In addition to these
limitations, one also has to deal with geometric bottlenecks.
For instance, the simulation of a triangular lattice with
projected entangled pair states (PEPS) [1,5,19,20] would
naïvely imply tensors with six bond indices, if we were to
use one tensor per lattice site. As such, handling tensors
with so many indices quickly becomes computationally

expensive for numerical simulations. The same problem
also arises for higher-dimensional systems, where high-
connectivity lattices are quite usual. This is a serious issue,
since such large-connectivity lattices are usually linked to
exotic phases ofmatter such as quantumspin liquids [21–25].
Here we propose a physically motivated strategy to solve

this problem, which on top is remarkably efficient and
accurate. The idea is to break down the physical degrees of
freedom into “smaller” pieces, i.e., to fine grain the lattice.
This can be done at the expense of introducing a set of fine-
graining isometries. The key advantage is that the fine-
grained lattice is easily amenable to TN methods. Unlike
other proposals of TN methods for high-connectivity
lattices [7,10–13,26,27], our approach preserves the correct
geometric structure of the system, thus being better suited
in terms of the entanglement structure. In what follows we
explain the approach and use it to compute ground-state
properties of the ferromagnetic spin-1 transverse-field Ising
model on the triangular and 3D stacked triangular lattice, as
well as of the hardcore and softcore Bose-Hubbard models
on the triangular lattice. We benchmark the results against
those obtained with perturbative continuous unitary trans-
formations (PCUTs) [28–30] and graph projected entangled
pair states (GPEPS) [13], showing excellent agreement and
also improved performance in several regimes.
Method.—Our approach is based on a simple yet power-

ful idea: split the physical degrees of freedom into smaller,
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more fundamental entities which, when coarse grained,
reproduce the original physical ones. In other words, fine
grain the local Hilbert spaces at each site.
Before proceeding any further let us give a practical

example. Imagine that we have a spin-1 particle. As is well
known, this can always be understood as two spin-1=2
particles which are projected into their spin-1 subspace in
the coupled basis. Mathematically, since for SU(2) irreps
one has 1=2 ⊗ 1=2 ¼ 0 ⊕ 1, what we do is to project out
the singlet part with spin 0 and keep the triplet with spin 1.
In this way, we constructed a spin-1 out of two spins-1=2.
But we can also consider the procedure the other way
around: we fine grain a spin-1 into two spins-1=2 by using
the appropriate “inverse” projector, i.e., a fine-graining
isometry, which in this particular case is the Clebsch-
Gordan coefficient h1=2; 1=2; m1; m2j1=2; 1=2; 1; mi with
m1;2 ¼ �1=2 and m ¼ −1; 0;þ1, using the standard nota-
tion hj1; j2; m1; m2jj1; j2; 1; mi.
The idea above is generalized as follows: a physical degree

of freedom described by a Hilbert space Hp can be under-
stood as the coarse-grained space of some other fine-grained

Hilbert spaces H½1�
f and H½2�

f via some isometry W, i.e.,

W∶H½1�
f ⊗ H½2�

f → Hp; ð1Þ

with W ¼ P
if1f2 W

i
f1f2

jf1ijf2ihij. In TN language, the
three-index tensor Wi

f1f2
coarse grains the indices f1 and

f2 into i. Seen in reverse, the physical index i is fine grained
into indices f1 and f2 by the isometric tensorWi

f1f2
. SinceW

is an isometry, it implies thatW†W ¼ Ip, with Ip the identity
in the physical Hilbert spaceHp, see Fig. 1(a). Let us remark

that we considered here the case of two fine-grained
Hilbert spaces, but the idea can be easily generalized to
having more than two. In fact, the whole isometry W could
even have a TN structure itself (as in, e.g., the multiscale
entanglement renormalization Ansatz (MERA) [31]), if
required. Generically, the isometry can also be understood
in the language of entanglement branching operators [32].
Next, we apply this fine graining to the physical degrees

of freedom of many-body systems with high-connectivity,
which allows us to simplify the underlying lattice structure
and therefore make them more amenable to TN simulation
methods. Let us consider, without loss of generality, the case
of a triangular lattice. As shown in Figs. 1(b) and 1(c), fine
graining every site maps the triangular lattice into a square
lattice. The key point is to realize that, in such a scenario,
operators on the triangular lattice are mapped to operators on
the fine-grained square latticevia the isometryW, as shown in
Fig. 1(c). For instance, for an one-site operatorOp acting on
one site of the physical lattice, one has

Of ¼ WOpW†; ð2Þ

with Of the corresponding operator on the fine-grained
lattice. In the case of the triangular lattice that we are
discussing, this maps a one-site operatorOp on the triangular
lattice to a two-site operator Of on the square lattice. In
general, for a fine-graining isometry involving n fine-grained
Hilbert spaces, an m-body operator on the original lattice is
mapped to an ðn ×mÞ-body operator in the fine-grained one.
Our method can thus be summarized in three steps:

(i) find an isometry W that reduces the connectivity of the
lattice after fine-graining, (ii) use W to map all operators
involved in the TN algorithm to their fine-grained versions,
and (iii) run the TN algorithm on the fine-grained lattice
using the fine-grained operators.
The mapping between lattices preserves locality inas-

much the isometry W is local. This implies, for instance,
that local expectation values in the original lattice may also
be mostly local in the fine-grained one. Notice also that,
at the level of TN optimization and calculation of local
expectation values, one can fully operate in the fine-grained
space only, see Fig. 1(c) for an example.
A number of practical considerations are in order. First,

the isometry W is a new degree of freedom that enters the
TN algorithm. It could be optimized following aMERA-like
procedure, yet another option is to fix it to some reasonable
choice and optimize over the tensors of the fine-grained TN.
This choice is not unique andmoreover it is also reasonable to
think that some isometries may work better than others
in practice depending on the symmetries of the system.
Generally, an isometry that splits the physical Hilbert space
symmetrically seems to be beneficial (e.g., a decomposition
of 1 ¼ 0 ⊗ 1 is valid but unbalanced). Second, interaction
terms in the fine-grained Hamiltonian may become of
slightly longer range. For instance, for a Hamiltonian with

(a) (b)

(c)

FIG. 1. (a) Isometry W projects the fine-grained Hilbert spaces

H½1�
f and H½2�

f into the physical space Hp. The isometry verifies
W†W ¼ Ip, with Ip the identity in the physical space. (b) Expect-
ation value of an one-site operator for a 2D PEPS on a triangular
lattice. (c) By introducing resolutions of the identity W†W at
every site, we can rewrite the expectation value in terms of a fine-
grained two-site operator and fine-grained PEPS tensors on a 2D
square lattice.
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nearest-neighbor interactions on the triangular lattice, one
gets interactions that span over four sites in the fine-grained
square lattice. Third, and aswe said above,more complicated
isometries are also possible, even with an internal TN
structure. Further discussion about the details of the method
and the relevant tensor updates can be found in Refs. [33,34].
Numerical results.—In order to benchmark the validity

of our approach we computed the ground-state properties of
several models on the triangular lattice for a unit cell of
2 × 2 tensors. For this, we used fine-graining together with
the infinite-PEPS algorithm (IPEPS) [35,36] on the square
lattice with a 2 × 4 unit cell and simple update, also for
four-body interactions, and computed expectation values
with corner transfer matrix (CTM) techniques [7,9,36].
The first model that we considered is the spin-1

ferromagnetic quantum Ising model in a transverse field,
described by the Hamiltonian [37]

H ¼ −J
X

hi;ji
σ½i�x σ

½j�
x − h

X

i

σ½i�z ; ð3Þ

with σ½i�α the 3 × 3 spin-one matrix at site i, J > 0 the
ferromagnetic interaction strength, and h the magnetic
field. It realizes a polarized phase for small J=h and a
symmetry-broken ordered phase for large J=h separated by
a second-order phase transition in the 3D Ising universality
class. The location of the critical point can be estimated
precisely by the PCUT series of the one-particle gap in
the polarized phase using Dlog Padé extrapolation [38]
which yields ðJ=hÞPCUTc ¼ 0.1898ð1Þ or equivalently in the
inverse unit ðh=JÞPCUTc ¼ 5.269ð3Þ [33,39].
For the fine-PEPSwechoose to fine-grain each spin-1 into

two spins-1=2 via an isometry that equals a Clebsch-Gordan
coefficient,Wm

m1;m2
¼ h1=2; 1=2; m1; m2j1=2; 1=2; 1; mi. In

Fig. 2 we show the ground-state energy per site computed
by fine-graining (fine-PEPS) with PEPS bond dimension
D ¼ 3, as well as using GPEPS with D ¼ 6 and PCUT up
to O(12) in the high-field expansion in J=h. Remarkably,
even for a small bond dimension D ¼ 3, the agreement of
fine-PEPS with PCUT for J=h ≤ ðJ=hÞPCUTc within the
polarized phase and with GPEPS for large J=h inside the
symmetry-broken ordered phase is almost perfect. In Fig. 3
we also plot longitudinal and transverse magnetizations as
computed by fine-PEPS and GPEPS, also in excellent
agreement, and with an approximate quantum critical point
of ðh=JÞfine−PEPSc ≈ 5.605. Notice that the critical point
obtained by the two tensor network methods deviates from
the PCUT result ðJ=hÞPCUTc . This is, however, due to the
simple update, which does not make use of the full
environment when updating the tensors. Simulations with
the full environment would improve the accuracy close to
criticality, shall this be required.
Furthermore, we simulated the Bose-Hubbard model on

the triangular lattice, described by the Hamiltonian [40,41]

H¼−t
X

hi;ji
ða†i ajþH:c:ÞþU

2

X

i

niðni−1Þ−μ
X

i

ni; ð4Þ

with aj; a
†
j and nj ¼ a†jaj respectively being bosonic

annihilation, creation and number operators at site j, t
the hopping strength, U the on site density-density inter-
action, and μ the chemical potential.
In the hardcore limit U → ∞, where individual sites are

either empty or occupied by one boson, this model realizes
two exact gapped Mott phases with density zero and one as
well as an intermediate gapless superfluid phase. The phase
transitions at ðμ=JÞc ¼ �6 between the Mott and super-
fluid phases can be determined exactly by first-order
perturbation theory for the one-particle gap of the two
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FIG. 3. Longitudinal and transverse magnetization per site for
the ferromagnetic spin-1 quantum Ising model on the triangular
lattice, as computed by fine-PEPS and GPEPS.
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FIG. 2. Ground-state energy per site for the ferromagnetic
spin-1 quantum Ising model on the triangular lattice, as computed
by fine-PEPS (circles), GPEPS (diamonds), and PCUTs (solid
lines). The vertical dashed line refers to the critical point
ðh=JÞPCUTc ¼ 0.1898ð1Þ from extrapolating the one-particle
PCUT gap.
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Mott phases [33]. Technically, we fine grain every hardcore
boson into two hardcore bosons via an isometry with
nonzero coefficients W0

0;0 ¼ 1;W1
1;0 ¼ W1

0;1 ¼ 1=
ffiffiffi
2

p
.

Thus, if the physical site is occupied, then the hardcore
boson can be on either of the fine-grained sites. In Fig. 4
we show our numerical results for the particle density
ρ ¼ ha†jaji and the condensate fraction ρ0 ¼ jhajij2 for
fine-PEPS and GPEPS both up to D ¼ 6 and with t ¼ 1,
showing excellent agreement in the superfluid and Mott-
insulator phases.
Furthermore, we considered the softcore case up to two

bosons per lattice site so that the ground-state phase diagram
consists of three Mott lobes with densities n ∈ f0; 1; 2g and
superfluid phases. The empty (n ¼ 0) and completely filled
(n ¼ 2) Mott states are again exact eigenstates of the system
and the corresponding one-particle gap Δp

n¼0 ¼ −μ − 6t
(one-hole gap Δh

n¼2 ¼ −U þ μ − 12t) can be calculated
exactly [33]. This is different for the Mott phase with
n ¼ 1 where the hopping term introduces quantum fluctua-
tions. For the fine-PEPS we break down again each local
site in terms of two hardcore bosons which, when both
occupied, result in a double occupied physical site.
For this we use an isometry with nonzero coefficients
W0

0;0 ¼ 1;W1
1;0 ¼ W1

0;1 ¼ 1=
ffiffiffi
2

p
;W2

1;1 ¼ 1. The particle
density and condensate fraction for softcore bosons is
shown in Fig. 5, computed by fine-PEPS up to D ¼ 5
and GPEPS up to D ¼ 6 with t ¼ 0.01 and U ¼ 1, again
showing an excellent agreement in all superfluid and
Mott-insulating phases.
In order to show the potential of our method in higher

dimensions we consider Eq. (3) on a 3D stacked triangular
lattice (see [33] for a depiction of the lattice structure). The
location of the critical point with expected mean-field
exponents can be estimated again precisely by

extrapolating the PCUT series of the one-particle gap in
the polarized phase which yields ðh=JÞPCUTc ¼ 7.45ð1Þ
[33]. Here the local IPEPS tensors have eight virtual
indices besides the physical one. Using the same idea of
fine graining the local Hilbert space of the spin-ones, the
model is mapped onto a cubic lattice. Importantly, this
mapping enables the use of 3D CTM schemes to perform
the contraction of the infinite 3D lattice. Due to the reduced
importance of quantum fluctuations in 3D we choose
however to use the mean-field environment for every local
IPEPS tensor in the present simulations. Figure 6 shows the
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FIG. 4. Particle density and condensate fraction for the hard-
core Bose-Hubbard model on the triangular lattice, for t ¼ 1, as
computed by fine-PEPS and GPEPS.
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FIG. 5. Particle density and condensate fraction for the softcore
Bose-Hubbard model on the triangular lattice with up to 2 bosons
per site, for t ¼ 0.01 and U ¼ 1, as computed by fine-PEPS
and GPEPS.
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the ferromagnetic spin-1 quantum Ising model on the 3D stacked-
triangular lattice, as computed by fine-PEPS and GPEPS. The
inset shows the ground-state energy per site of the ITF model
obtained with fine-PEPS, GPEPS, and PCUT (bare order 12 is
shown).

PHYSICAL REVIEW LETTERS 124, 200603 (2020)

200603-4



magnetization as well as the ground-state energy as a
function of the magnetic field. We find ðh=JÞfine−PEPSc ≈
7.59 which is in good agreement with that of GPEPS
and PCUT.
Conclusions.—In this Letter, we have proposed an

efficient approach to deal with lattices of high connectivity
in TN methods, by using a fine graining of the physical
degrees of freedom. Under suitable conditions, this fine
graining simplifies the lattice and essentially keeps locality
of interactions. After a fine graining of operators, the
approach allows us to apply usual TN methods on simpler
lattices in a remarkably efficient way. Most importantly, the
fine graining allows us to use the CTM method for
approximating the contraction of the infinite TN, in turn,
capturing all quantum correlations into the environment of
local tensors which are also essential for the full update
IPEPS simulations. This is a huge advancement over other
TN methods such as GPEPS which use mean-field envi-
ronments for calculations of the expectation value of local
operators and correlators. We have explained in detail the
example of the 2D triangular lattice, which in our approach
can be simulated using standard 2D square-lattice PEPS
algorithms. Our method has been benchmarked with
numerical simulations of the ground state of paradigmatic
magnetic and bosonic models in 2D and 3D, with excellent
accuracy when compared to other methods such as PCUT
and GPEPS. We believe that the approach in this Letter will
allow us to overcome the computational cost associated to
simulating lattices of high connectivity, such as the ones
typically found for higher dimensional systems and frus-
trated quantum antiferromagnets and will become an
instrumental tool in the discovery of new exotic phases
of quantum matter.
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Kshetrimayum, and M. Rizzi. We also acknowledge
DFG funding through Grant No. GZ OR 381/3-1 as well
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