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The quantum neural network is one of the promising applications for near-term noisy intermediate-scale
quantum computers. A quantum neural network distills the information from the input wave function into
the output qubits. In this Letter, we show that this process can also be viewed from the opposite direction:
the quantum information in the output qubits is scrambled into the input. This observation motivates us to
use the tripartite information—a quantity recently developed to characterize information scrambling—to
diagnose the training dynamics of quantum neural networks. We empirically find strong correlation
between the dynamical behavior of the tripartite information and the loss function in the training process,
from which we identify that the training process has two stages for randomly initialized networks. In the
early stage, the network performance improves rapidly and the tripartite information increases linearly with
a universal slope, meaning that the neural network becomes less scrambled than the random unitary. In the
latter stage, the network performance improves slowly while the tripartite information decreases. We
present evidences that the network constructs local correlations in the early stage and learns large-scale
structures in the latter stage. We believe this two-stage training dynamics is universal and is applicable to a
wide range of problems. Our work builds bridges between two research subjects of quantum neural
networks and information scrambling, which opens up a new perspective to understand quantum neural

networks.
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The neural network (NN) lies at the heart of the recent
blossom of deep learning [1]. The NN distills information
from the input, usually represented by a high-dimensional
vector, and encodes it into a lower-dimensional output
vector. Recently, quantum generalizations of NNs have
been proposed and actively studied [2—16]. In a quantum
NN, both the input and the output are quantum wave
functions. The classical mapping is replaced by a quantum
channel composed of unitary evolutions and measurements
[17]. The quantum NN is considered as one of the
promising applications for near-term noisy intermediate-
scale quantum devices [18]. Moreover, it has been sug-
gested that the quantum NN has more expressive power
than its classical counterpart [14].

Similar to a classical NN, quantum information in the
input wave function is distilled and encoded into the output
in a quantum NN. This process is illustrated by the forward
arrow in Fig. 1(a). Intriguingly, for a quantum NN, this
process can also be viewed from the opposite direction. By
deferring measurements until the end of the quantum
channel [19], the information encoded in output qubits
just before the measurement is spread into the entire system
by unitary transformations, as illustrated by the backward
arrow in Fig. 1(a). Such processes that the information of
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a small subsystem is scrambled to a larger region are
known as the information scrambling. The subject of
information scrambling is well studied in contexts such
as thermalization, chaos and information dynamics in
quantum many-body systems, and even black-hole physics
[20-27].

Quantum NNs and quantum information scrambling so
far are two separated research topics. The purpose of this
Letter is to bridge the gap and make their connection: In a
quantum NN, information encoding and the information
scrambling are the same process viewed from opposite
directions.

There have been information-theoretic studies of
classical NNs [28-31]. However, in classical NNs, the
mapping at every layer is usually not invertible and the
information is generally not preserved. Due to the infor-
mation loss during the process, the mutual information
always decreases with the network depth. In contrast, the
unitarity of quantum evolutions preserves the information
perfectly. The mutual information between the input and
the output of any unitary transformation is always maximal.
In order to have nontrivial diagnosis in quantum NNs, the
key is to consider the mutual information between sub-
systems of the input and the output. This naturally leads to
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FIG. 1. (a) Schematic of a quantum circuit with brick-wall
geometry. Here, the network has n = 5 qubits and depth [ = 4.
All two-qubit gates form a giant unitary transformation U that
distills the information from the input qubits and encodes it into
one output qubit. The inverse process is that the information of
one output qubit is scrambled into input qubits by U'. A is
the output subsystem, and C and D are input subsystems in the
definition of the tripartite information. (b) Illustration for the
operator-state mapping in the definition of tripartite information.
Each leg may represent multiple qubits.

the tripartite information—a quantity that characterizes the
information scrambling [32,33].

Here, we study the training dynamics of quantum NNs
using the tripartite information. We simultaneously monitor
both the network performance and the tripartite information
during training and observe empirical relations between
them. Based on the behavior of these two quantities, the
training process can be decomposed into two stages, which
we call the “local construction stage” and the ‘“‘global
relaxation stage.” In the following, we present a detailed
analysis of the training dynamics and provide evidence to
support our claim.

Tripartite information of quantum neural networks.—
Consider a unitary operator U/ in the n-qubit Hilbert space

on

0="> Uliyl.
i.j=1

where {|i),i =1, ...,2"} denotes a complete set of bases in
the Hilbert space. It can be regarded as a tensor with 7 input
and n output legs. As illustrated in Fig. 1(b), we divide the

output legs (qubits) to two non-overlapping subsystems A
and B and similarly divide the input legs (qubits) to C
and D.

The operator can be mapped to a state in the 2n-qubit
Hilbert space as

on

U) =" Uy/V2"i)j).
ij=1

Since |U) is a pure state, the entanglement entropy of its
subsystem is well defined, e.g., S(A) = —tr(p,log,p, ) with
pa = trg cp(|U)(U|) being the reduced density matrix of
subsystem A. The mutual information between the output
subsystem A and the input subsystem C is I(A,C)=
S(A) + S(C) — S(A U C). A similar definition can be made
for I(A, D) and I(A, C U D). The tripartite information of
the unitary U is defined as [32,33]

I3(A,C.D) = I(A.C) + I(A,D) — I(A.Cu D). (1)

Because C U D are all input qubits, it can be proved that
I(A,C U D) = 2|A|, where |A| is the number of qubits in
subsystem A. Therefore, it is crucial to consider the mutual
information between subsystems of both input and output
qubits.

The strong subadditivity of the entanglement entropy
leads to I3(A, C,D) <0 for a unitary gate. The absolute
value of the tripartite information I3(A, C, D) measures
how much information of subsystem A is shared by C and
D simultaneously after the unitary transformation, and thus
quantifies how scrambled a unitary is. For example, for an
identity unitary transformation U;; = §;;, if A is entirely
contained in C or D, it is straightforward to show that
I3(A, C,D) = 0. As an opposite limit, consider a state |U)
with U;; sampled from the uniform Haar random ensemble.
The reduced density matrix of a small subsystem A U C
satisfying |A|+|C| < n/2 is approximately identity. This
leads to I(A,C) = 0. Similarly, /(A, D) = 0. Therefore
I5(A, C, D) = —2|A|, which is the minimal value for /5 [33].

Having introduced the tripartite information for a general
unitary transformation, we now turn to tripartite information
of a quantum NN. Here, we only consider parameterized
quantum circuits with brick-wall geometry. As shown in
Fig. 1(a), each brick represents an independent two-qubit
unitary gate in the SU(4) group, and it is parameterized using
its 15 Euler angles [34]. During training, these parameters are
optimized with classical optimization algorithms. All these
two-qubit gates form a quantum circuit represented by a giant
unitary transformation {J.

The datasets to be studied in this work have several
important features. First, the input wave functions all have
time reversal symmetry, and consequently can be repre-
sented as real vectors. Therefore, we restrict two-qubit
gates to SO(4) with six Euler angles each. Second, the
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output target is either a real number within [—1, 1] or a
binary label within {0, 1}: only one readout qubit is needed
at the end of the quantum circuit. For simplicity, we always
let n be odd and fix the readout qubit to be the qubit at the
center, i.e., the [(n + 1)/2]th qubit.

To define tripartite information, we always fix the output
subsystem A to be the central readout qubit. To respect the
symmetry that A is located at the center, we always choose
C to be the central |C| input qubits in the circuit and D to be
the remaining input qubits. Note that, under this definition,
D in general contains two disconnected regions. The
tripartite information /53(A, C, D) characterizes how much
information of the output qubit is scrambled on the input
side between the central region C and the outer region D.

Magnetization learning.—The first task is to learn the
average magnetization of a many-body wave function of n
half-spins in a supervised manner. The dataset consists of N
input-target pairs {(|G*),M%),a=1,...,N}, where the
input wave function |G*) is the ground state wave function
of the parent Hamiltonian with random long-ranged spin-
spin interactions:

n n
=Y (J;0i6% + Kofo!) + Y _(gio} + hof).  (2)
ij=1 i=1

where o' represents the pth Pauli matrix on the ith qubit;
u=x,y zand i=1,...n J;, K;, g;, and h are all
random numbers. The target is the average magnetization
computed as M¢ = (G*|M_|G*), where the magnetization
operator is

n
V= z
M, = E o;/n.
i=1

In sampling the random Hamiltonian, we ensure J;; <0
such that the ground state wave functions are either
“ferromagnetic” or “paramagnetic” measured under M.
h is a small pinning field randomly drawn from a
distribution with zero mean, which is used to trigger the
spontaneous Z, symmetry breaking in the ferromag-
netic phase.

The quantum NN takes the input wave function |G*) and
applies the unitary transformation U/ on it. The magneti-
zation is read out by measuring ¢* of the central qubit. We
choose to measure ¢* instead of ¢° because the quantum
NN may learn some shortcut that is unable to generalize if
the measurement and the target physical observable are
under the same basis. This is essentially a regression task,
and the loss function to be minimized is the absolute error
of the magnetization:

1 . R
L= ﬁz (G| o}, ), 01G) = M2 (3)
a=1

We simulate the above hybrid quantum-classical quan-
tum NN training algorithm. The distributions of random

parameters in the Hamiltonian [Eq. (2)] are chosen such
that M¢ in the dataset roughly distributes uniformly within
[-1,1]. All two-qubit unitaries in the quantum NN are
initialized randomly. The parameters are optimized with the
gradient descent algorithm in Ref. [35]. The gradients can
be computed directly, thanks to the linearity of the quantum
channel, and are measurable in a realistic quantum
NN [7,9,36].

Two-stage training.—In Fig. 2(a), we show the training
loss and the tripartite information, both averaged over
different initializations, as functions of the training epoch.
Averaging over different initializations reduces the vola-
tility within a single training instance and makes the
correlation between the two quantities clearer. At the early
stage of the training, the rapid improvement of the quantum
NN performance, characterized by a fast decrease of the
training loss, is accompanied by an almost linear increase
of the tripartite information. In other words, the quantum
NN becomes less scrambled compared with the initial
random unitary. This training stage terminates when the
tripartite information reaches its local maximum. In the

(a) 08

0.6

0 100 200 300 400

-0.01 -

-0.02 /

AL

-0.03 |

B U —

-0.05
0

FIG. 2. (a) Training loss £ and tripartite information
I3(A, C, D) as functions of the training epoch. The shaded area
represents one standard deviation. (b) Finite difference of training
loss AL and tripartite information A/5 as functions of the training
epoch. The dotted vertical line indicates the boundary between
two training stages, which is determined as the maximum of the
averaged /5 given by Al; = 0. All results are averaged over 20
different random initializations. The network has n =9 qubits
and depth [ = 6. The training and validation dataset contains N =
2500 and 500 wave function-magnetization pairs, respectively,
sampled from random Hamiltonian ensemble, where random
parameters are distributed uniformly within J;;/J € [-1,0],
K;;/J e [-1.1], g;/J € [-6,6], and h/J € [-0.04,0.04]. J is
the energy unit. The learning rate is A = 1072, Here and in the rest
of the Letter, the input subsystem size |C| = 5.
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next stage, the tripartite information decreases again,
meaning that the network scrambles information faster.
The network performance also improves but with a much
slower rate compared with that in the first stage. In
Fig. 2(b), we plot the finite difference of the two metrics
AL and Al; together and use a dashed line to indicate the
maximum of /5 given by Al; = 0. One can see clearly that
AL also drops to negligible small values around the dashed
line, meaning a much slower decreasing rate of £ in the
later stage.

We call the training stage before /5 reaching the
maximum the local construction stage, and the latter stage
where /5 decreases is the global relaxation stage. The
reason for the names will be clear after we study the
training dynamics in detail below. The empirical observa-
tion that quantum NN performance and the information
scrambling are closely correlated is the main finding of this
work. This correlation has been observed in all our
numerical simulations with different network initializa-
tions, training algorithms, system sizes, and network depths
[38]. We also train quantum NNs for learning the staggered
magnetization from the ground state of random antiferro-
magnetic and even frustrated Hamiltonians, as well as the
winding number of a product quantum state. Despite the
very different natures of these tasks, the empirical corre-
lation between the NN performance and the tripartite
information still holds. All details were presented in [36].

Local construction stage.—We claim that, during the
first stage when the tripartite information linearly increases,
the quantum NN learns local features of the input wave
function. For the magnetization learning task, because of
the existence of ferromagnetic domain, there is some
probability that any single spin is aligned relatively well
with remaining spins in the system. Simply outputting any
single-spin magnetization of the input wave function is
actually a reasonable guess so that the training loss can
decrease rapidly. For such networks where only local
features are extracted, information does not need to be
scrambled into the whole system. Therefore, the tripartite
information increases during this stage.

To support the above claim, we compute two-point
correlations between input qubits and the readout qubit:

LY R .
Coli) = D (Gloil7at, ) 0167 (@)
a=1

If one views U as a time evolution operator, then C; (i) is
simply a two-point function between two different places
and two different times. In Fig. 3(a), we plot C, as a
function of different input qubits and training epochs in the
early training stage. As can be seen, they increase rapidly
and then saturate to large values. The increasing correlation
indicates that the quantum NN is establishing the corre-
spondence between local input features and the output
qubit. During this stage, the tripartite information also
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FIG. 3. (a) Two-point correlation function C, (i) as a function of
the training epoch and the input qubit i for a typical initialization.
(b) Tripartite information /5(A, C, D) as a function of the training
epoch for different initializations and learning rates. All solid
lines are trained under learning rate 2 = 1072, The transparent
orange lines are trained with the same initialization as the solid
orange line but with learning rates 4 = 6,8, 12, and 14 x 1073,
The average slope for the four initializations shown here is plotted
in the inset as a function of the learning rates. The error bars
represent the standard deviations of fitted slopes for the fixed
learning rate but different initializations.

increases, and the two-point correlation function saturates
when the tripartite information reaches the maximum. All
these observations are consistent with our claim that, during
the first local construction stage, local features are extracted
from the input.

Before concluding this section, we point out another
interesting observation that the linear increasing slope of
the tripartite information is nearly a constant that is
independent of the initialization, shown in Fig. 3(b). Of
course, this slope depends on the learning rate of the
gradient descent algorithm. As shown in the inset, the /5-
independent slope scales linearly with the learning rate.

Global relaxation stage.—We now turn to the second
stage where the tripartite information decreases and the
training loss decreases with a much slower rate. We claim
that, during this stage, the quantum NN learns global
features of the wave function. To provide evidence for this
claim, we test the quantum NN in an artificial test dataset
{(lw}). M%), a=1,...,Np}, constructed according to the
following process. First, we sample ground states |G*)
from the random Hamiltonian of Eq. (2). Next, we apply
the following unitary transformation to flip a region of
spins:
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FIG. 4. (a) Training loss and tripartite information as functions
of the training epoch for a typical initialization. (b) Loss functions
on the artificial test dataset with “ferromagnetic domain” of size
D =3 and 5 for the same training instance as Fig. 4(a).
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For paramagnetic wave functions |G*), this transformation
leaves these wave functions paramagnetic. However, for
ferromagnetic wave functions |G%), the transformation
creates a ferromagnetic domain wall of size D, as sketched
in Fig. 4. In order to accurately compute the magnetization
of such wave functions, the quantum NN must be able to
learn structures larger than the domain wall size D. In [36],
we present an argument on why, in this task, long string

operators should exist in f/TJE(n ) /20 when it is expanded

under the basis of the product of local Pauli matrices.

In Fig. 4(b), we show losses on test datasets with D = 3
and 5 as functions of the training epoch. In the later stage
of training, although the training loss decreases slowly,
the tripartite information can decrease rather drastically,
accompanied by a rapid decreasing of losses on both test
datasets. Moreover, the larger the domain wall size is, the
later the test loss begins to decrease. This means that the
information scrambling is associated with the performance
improvement on wave functions with large domain struc-
tures. This naturally explains why the unitary has to
become more scrambled. Since such data are rare in the
training dataset, it also explains why the training loss
improvement is slow. Finally, we note that, in Fig. 2, the
standard deviation of /5 is quite large in the later stage. This
is consistent with the chaotic nature of the information

scrambling because it is now known that the quantum
many-body chaos and the information scrambling are two
closely related concepts.

Discussion and outlook.—In summary, we apply a
metric of quantum information scrambling—the tripartite
information—to diagnose the training process of quantum
NNs. We find strong correlation between this metric and
the loss function, and we identify a two-stage training
dynamics of quantum NN. We show that the quantum NN
establishes local correlations in the early stage and builds
up global structures in the later stage. Such two-stage
dynamics is reminiscent of physical processes such as
annealing of ferromagnetism and the operator growth in
many-body quantum chaos. We believe this two-stage
dynamics is universal for a wide range of quantum machine
learning problems. We also believe that the profound
connection between the information scrambling and the
quantum NN could find broader applications in quantum
machine learning, such as revealing the underlying mecha-
nism of quantum machine learning and guiding the
quantum NN architecture design.
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