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Within cells, vesicles and proteins are actively transported several micrometers along the cytoskeletal
filaments. The transport along microtubules is propelled by dynein and kinesin motors, which carry the
cargo in opposite directions. Bidirectional intracellular transport is performed with great efficiency, even
under strong confinement, as for example in the axon. For this kind of transport system, one would expect
generically cluster formation. In this Letter, we discuss the effect of the recently observed self-enhanced
binding affinity along the kinesin trajectories on the microtubule. We introduce a stochastic lattice-gas
model, where the enhanced binding affinity is realized via a floor field. From Monte Carlo simulations and
a mean-field analysis we show that this mechanism can lead to self-organized symmetry breaking and lane
formation that indeed leads to efficient bidirectional transport in narrow environments.
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Introduction.—The efficiency of intracellular transport is
one of the most intriguing features of biological cells.
Different kinds of cellular cargo have to be transported to
specific locations in order to maintain the cells’ function-
ality. Intracellular transport can be driven by molecular
motors, i.e., specialized proteins that can carry cargo along
polar filaments of the cytoskeleton [1–4]. Molecular
motors, such as the microtubule (MT) associated proteins
(MAPS) kinesin and dynein, step stochastically along MTs
in a given preferred direction: kinesins step typically
toward the plus end and dyneins to the minus end.
Molecular motors are able to carry big (on the scale of
the cell) objects through crowded environments.
We focus on bidirectional motor-driven transport under

spatial confinement, which is for example relevant for
intracellular transport in axons. In this kind of environment,
active transport is particularly difficult to organize, since
cluster formation is generically observed in spatially
extended one-dimensional systems [5–9]. Clusters can
either have stationary particle output [7] or can lead to
long times of blockages such as for non-Markovian site
exchange [9]. The general question we address in this
Letter is the following: how do confined systems of active
particles self-organize to realize efficient bidirectional
transport states?
Motor-driven transport has been described by variants of

the totally asymmetric exclusion processes (TASEP),
which combine the directed stochastic motion of particles
on a one-dimensional lattice with hard-core exclusion and
Langmuir-kinetics [5,10–12]. In principle, the particle
exchange with a reservoir would allow for bidirectional
transport, in case of large diffusivity of unbound particles.
However, if the unbound particles are localized, so far no
mechanism has been suggested which leads to efficient

bidirectional transport. A rather direct approach is the self-
organization in subsystems each of which carries unidirec-
tional transport. A recent hypothesis is that post-translational
modifications on MTs might organize transport in neurons
[13,14]. This kind of organization has been observed
for example in dendrites, where the MTs are oppositely
oriented [15] and inMTdoublets in cilia [16]. Furthermore,
motor proteins can regulate MTs themselves [17], and
MT dynamics [5] and tau [18] can affect motor transport.
Recent experimental findings suggest a possible

mechanism leading to efficient bidirectional transport
on MT bundles where no a priori compartmentalization
exits. Shima et al. [19] reported that binding affinity of
MTs for kinesin motors is self-enhanced along the kinesin
trajectories which modify the MTs. This kind of self-
induced preferential binding can be understood as a true
realization of a floor field, which has been successfully
introduced as a virtual mechanism in order to generate,
e.g., lane formation in bidirectional pedestrian flows
[20–24].
In this Letter, the transport problem is formulated as a

TASEP with Langmuir-kinetics, where we additionally
consider an explicit particle reservoir and a floor field.
Our theoretical model describes the key features of bidi-
rectional axonal transport but considerably reduces the
complexity of the biological reference system.
The model.—We study a TASEP with Langmuir kinetics

of two particle species moving on a pair of parallel,
identically polarized one-dimensional filaments. The model
filaments (MTs) are represented as one-dimensional, static
lattices. Lattice sites can either be empty or occupied by a
single particle. We consider two types of particles, i.e.,
moving to the plus end of the filament (τ ¼ 1, blue in
Fig. 1) and to the minus end (τ ¼ −1, red).
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Particle dynamics: Both types of particles can either be
bound or unbound to a filament [triangles or squares in
Fig. 1(c)]. Bound particles step to the neighboring site
(target site) with rate ωs or detach from the filament with
rate ωd [Fig. 1(c)]. In order to study lane formation as a
bulk effect, we are considering periodic boundary con-
ditions. Particles which detach from the filament stay at the
same lattice site, unlike in typical models with Langmuir
kinetics where particles move to a bulk reservoir [5,11].
This feature is crucial for modeling transport in crowded
environments, where unbound particles cannot simply
diffuse away from clusters.
Unbound particles can reattach to the filament with rate

ωa or change to an unbound state on the other filament with
a coupling rate ωc [Fig. 1(b)], where the position is kept.
Particles interact with each other via hardcore repulsion
[Fig. 1(c), bottom]. We distinguish three cases for particles
that are selected to step. (i) If the target site is free, the step
is executed. (ii) If the target site is occupied by a bound
particle the step is rejected. (iii) If the target site is occupied
by an unbound particle, the unbound particle is either
pushed to next site (in moving direction of the stepping
particle) or exchanges position with it (swapping). If both
pushing and swapping are possible, one of the two
possibilities is selected with a probability of 1=2. If the

site in moving direction next to the unbound particle is
occupied, swapping is executed [Fig. 1(c)].
Floor-field dynamics:In [19,25] an axial elongation of

the MT by kinesin has been reported. The elongation is
related to a metastable tubulin state that has a higher
binding affinity for kinesins. This effect is implemented via
a floor field that considers the number of MT protofila-
ments, Np ¼ 13. A floor field fi is assigned to each lattice
site i, which is given by

fi ¼
1

Np

XNp

k¼1

si;k; ð1Þ

where k denotes the index of the protofilament which is
permanently assigned to the particles until they detach from
the (proto-)filament. Therefore, fi represents the average of
Np substates si;k ∈ f−1; 0; 1g. The value of fi is updated
if particle steps to site i and thereby sets the value of a given
substate si;k to þ1ð−1Þ in case of þð−Þ directed motors.
The substate can decay back to 0 again with rate ωr
[Fig. 1(d)]. Averaging over Np substates introduces a
memory effect that stabilizes the preferential adsorption
of a given type of particle, i.e., the amplitude of the floor
field determines the robustness of the floor field against
changes of the affinity by single oppositely directed
particles. The subdivision of the floor field into “protofila-
ments" is also consistent with the observation that low
kinesin concentration may lead to a curvature of MTs,
which signifies a coexistence of excited and nonexited
tubulin states [25].
The state fi influences the binding affinity of particles

ωa;i given by

ωa;i ¼
(
ω0
aμ

jfij; τ ¼ sgnðfÞ;
ω0
a

1
μjfi j ; τ ≠ sgnðfÞ; ð2Þ

where ω0
a is the free attachment rate and μ ≥ 1 is called

affinity modification factor. This modification leads to
higher binding rates if the floor field state fi was predomi-
nantly set by particles of the same type τ as well as lower
rates for opposing combinations. If μ ¼ 1 or fi ¼ 0, the
interaction is neutral. We consider a symmetric excitation
for dynein and kinesin motors, though so far experimental
evidence for a modification of the MT structure by dynein
is still lacking.
Results and discussion.—We study the influence of the

floor field on the particle flux J as a measure of transport
efficiency as well as symmetry-breaking and self-organized
lane formation. First, we introduce a mean-field analysis
and then compare results to Monte Carlo (MC) simulations.
Mean-field analysis:As a reference, we consider TASEP

models [26], two-species, bidirectional exclusion proc-
esses [7,9,27], as well as combinations of TASEP
and Langmuir-kinetics [5,11,28]. From these models, a

(a)

(b)

(c)

(d)

FIG. 1. (a) Scheme of a neuron, indicating the crowded
environment and confinement inside axons, including MTs, plus
particles (blue), and minus particles (red). (b) Unbound particles
switch filaments with rate ωc. (c) Particle dynamics in the
exclusion process. Triangles mimic bound particles, the tip
indicates the direction. Unbound particles are shown by squares.
Bound particles can step or detach, unbound particles can
reattach. If a particle attempts to step onto a site occupied by
an unbound particle, it can either push it away or swap position.
Two bound particles block each other via exclusion. (d) The
floor-field state fi is averaged over all substates for every site i of
the lattice.
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mean-field estimation [29] of the flux Jud ¼ ρeffð1 − ρeffÞ
can be deduced for unidirectional one-filament systems
with Langmuir kinetics [30]. We use Jud for judging on the
transport efficiency. Note that fluxes are scaled by ω−1

s and
the system size L.
To include the floor-field dependency in a mean-field

model, we assume a simplified unbound state (u) shared for
both filaments called top (t) and bottom (b). The average
floor field f is represented by the normalized difference in
particle densities Δt;þ ¼ ðρþt − ρ−t Þ=ρþ for the plus species
and the top filament (bottom analog) so that we can
formulate the mean-field equations exemplary for plus
particles (details are in the Supplemental Material [30])

∂ρþt
∂t ¼ ω0

aμ
Δt;þρþu − ωdρ

þ
t ;

∂ρþu
∂t ¼ ωdðρþt þ ρþb Þ − ðμΔt;þ þ μΔb;þÞω0

aρ
þ
u ;

∂ρþb
∂t ¼ ω0

aμ
Δb;þρþu − ωdρ

þ
b : ð3Þ

Additionally, we get the identity ρ� ¼ ρ�t þ ρ�b þ ρ�u from
particle conservation. In the stationary state, we find the
equation for the difference in densities on the top filament
Δ as

Δ ¼ ðμΔ − μ−ΔÞ
1
ωd
ðμΔ þ μ−ΔÞ þ ωd

ω0
a

: ð4Þ

Equation (4) is numerically solvable and shows a pitchfork
bifurcation at a critical μ ¼ μcrit. For μ < μcrit, Eq. (4) has
only a single solution given by Δ0 ¼ 0, while for μ > μcrit
the solution Δ0 ¼ 0 gets unstable and two stable points at
Δ�, depending on ωd and ω0

a, occur. We also find that the
floor field has to modify the affinity for both species,
otherwise only a symmetric solution can be found [30].
By solving Eq. (4), the flux is estimated by

JMF ¼ ρþt ½1 − ðρþt þ ρ−t Þ�: ð5Þ

Parameters: We used the experimental results of [19] to
select the relevant parameters of the model, given in Table I
in the Supplemental Material [30]. We kept the ratesωs,ωd,
ω0
a, and ωr constant. The relevant density regime is rather

difficult to estimate. On the one hand the fraction of
occupied binding sites is rather low. On the other hand
molecular motors carry rather big objects (20 and 50 nm for
axonal vesicles [32,33], compared to a 8-nm step size for
most kinesin and dynein motors [34,35]), such that the
density in terms of the occupied volume along the MT is
considerably higher. Therefore, we did not focus on the low
density regime of ρ ≈ 0.01, which has been addressed in
[19] but varied the particle density in order to study the
stability of the bidirectional transport in our model.

The chosen lengths of approximately 1000 sites, which
correspond to MTs of length 8 μm, is in accordance to the
typical MT length in axons [36,37]. The range of the
affinity modification μ is motivated by different experi-
ments in which kinesin binding affinity has been measured
for different types of MTs. In [19,38], GTP-MTs show
three to four times higher affinity than GDP-MTs and
comparing [39] with [40], the affinity is five times higher.
The choice of coupling rates, filament number and the
number of sub-states in the floor-field implementation is
discussed in the Supplemental Material [30].
MC simulations:We investigate the influence of the floor

field on our stochastic model by performing MC simu-
lations with two filaments started with neutral floor fields
and randomly distributed particles. The total particle
density is given by ρtot ¼ ρþ þ ρ− ¼ 2ρþ.
A time-evolution of the system is shown in Fig. 2

averaged over 100 simulations. Yellow lines show the
difference in densities Δ. A filament with average floor
field f ¼ 1=L

P
L
i¼1 fi > 0 is called plus lane and f < 0

minus lane. The floor field fþ (f−) of the plus (minus) lane
is shown in blue (red), and the total flux J in green
(right axis).
Without modification, i.e., μ ¼ 1 in Fig. 2(a), no

symmetry breaking is observed. There is no significant
difference between fþ and f−, and particles are distributed
equally (Δ ¼ 0). By raising μ, the floor field values split up
andΔ increases. For μ ¼ 4, fþ (f−) and Δ almost reach the
extreme values �1, meaning a quasiseparation of particles
and totally asymmetric floor fields. This lane formation is
stable and the time evolution shows very little sample to
sample fluctuations. Also the difference in the particle
distribution Δ is in good agreement with the average floor
field jfj which makes Δ a good representation for f in the
mean-field analysis.
The stationary flux (green) increases for higher μ when

the floor-field is stabilized [Fig. 2(b) with μ ¼ 4]. In the
case of μ ¼ 4 (μ ¼ 6), there is an average effective velocity

(a) (b)

FIG. 2. Time dependence of the flux and particle densities for a
system of L ¼ 1000, ρ ¼ 0.05, and random initial configurations.
Values of the floor fields fþ, f− and difference in densities Δ are
given at the left axis; values of the total flux J, and the mean-field
estimation JMF are given at the right axis. (a) μ ¼ 1, (b) μ ¼ 4.
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of ≈270 nm/s (350 nm=s) for a motor protein, whereas the
free stepping velocity of bound kinesins is presumed to be
480 nm=s in this Letter [19]. As expected the mean-field
solution (dashed green line in Fig. 2) overestimates the flux
considerably, since a homogeneous distribution of particles
is assumed, while in the full model there are strong density
correlations due to cluster formation. However, the initially
symmetric two-lane system spontaneously breaks sym-
metry so both lanes carry stationary and oppositely directed
net flows.
In Fig. 3(a), we show the density dependence of the flux

for different μ in comparison to the unidirectional flux.
Simulation results show that the transport efficiency of the
system is significantly increased for (μ ≥ 3) compared to
the plateau obtained without a floor field (μ ¼ 1). Actually,
the flux reaches almost the value of the corresponding
unidirectional flux to Jud until it breaks down to the traffic
jam plateau value, similar for all μ. The density at which the
transition to the plateau value is observed depends on μ.
Note that the stationary state is not always reached at high
densities if we initialize the system with a random
configuration, indicated by the larger error bars in the high
density regime caused by metastable clusters [Fig. 3(a)],
which have not been dissolved within the simulation time.
Lane formation is both well characterized by the differ-

ence in floor fields Δf ¼ fþ − f− measuring asymmetry
between filaments and is shown in Fig. 3(b). The base line
corresponds to symmetric fields without lane formation for

μ ¼ 1. By increasing μ, the asymmetry develops in a
density dependent range before Δf drops down. Results
of Figs. 3(a) and 3(b) indicate a lane formation and
quasiordering of the system into two subsystems with
oppositely directed flux. When the self-organization breaks
down, traffic jams are forming on both lanes and transport
efficiency is not enhanced anymore. This is consistent with
lane formation observed in other floor-field models [20].
The influence of μ on the symmetry-breaking is further

examined in Figs. 3(c) and 3(d) by comparing mean-field
results to MC simulations. In Fig. 3(c), a phase diagram
from mean-field analysis for jΔj under variation of μ and
ωd is shown for fixed ω0

a ¼ 5 s−1. The blue dot marks μcrit
for ωd used in simulations and agrees with Figs. 2 and 3(b).
The border of jΔj > 0 shows that μcrit > 1 for arbitrary ωd.
There is only a small region where 0 < jΔj < 1 because the
mathematical solution of Eq. (4) can be larger than the
physical border of jΔj ¼ 1, hence particles are completely
separated. The transition is sharper for shorter run lengths
(larger ωd). In Fig. 3(d), J is growing under variation of μ
for constant ρ ¼ 0.05 and different L. Remarkably, the
transition from a symmetric to a stable asymmetric solution
is captured by the mean-field approach and even the
predicted value μcrit agrees well with simulation results.
The transition is sharper for L ≥ 1000 than for L ¼ 300,
hence, the larger system is better approximated by the
mean-field model. Also, larger systems have higher fluxes.
This is in contrast to the plateau value for μ ¼ 1, which
decreases with the system size. For even larger L it is
computationally hard to achieve stationary states but we
expect the system to still self-organize in lanes due to stable
lanes if already started in such conditions [30].
Conclusion and outlook.—To summarize, we introduced

a stable mechanism for efficient bidirectional transport of
active particles in one-dimensional systems under strong
confinement. This mechanism is based on self-organized
lane formation. Directed lanes may be predefined in
engineered systems, however, this is not always the case
for transport of animals or humans as for instance in
pedestrian dynamics where self-organized lane formation
occurs [20–24]. The influence of the floor field on particle
binding was inspired by recent experimental results on self-
induced strengthening of the kinesin MT affinity, but could
also be realized by other modifications of MTs. Lane
formation can be captured by a mean-field approach,
which shows the mechanism is stable against local density
fluctuations.
The stability of lane formation is remarkable in several

respects. First of all, lane formation is observed in the
biologically relevant low density regime. This is in contrast
to other mechanisms, based on particle-particle interactions
[41], which lead to symmetry breaking at high densities and
therefore low particle velocities, while in vivo observations
of, e.g., axonal vesicle transport show that vesicles trans-
ported by molecular motors reach the free stepping

(a)

(c)

(b)

(d)

FIG. 3. Transport efficiency (a) and symmetry breaking [(b),
(d)] under variation of density and affinity modification. Simu-
lations did run for three hours real time, measurements started
after one hour. Panel (c) shows the phase space for symmetric and
asymmetric solutions in the mean-field model.
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velocities of kinesin. Second, we observe the coexistence of
transport in both directions on a coupled pair of filaments,
which goes beyond symmetry-breaking mechanisms
reported as discussed in, e.g., [42] where symmetry break-
ing leads to unidirectional transport. Third, our model
describes the lowmobility of unbound particles, which may
trigger cluster formation in bidirectional transport and
illustrates the stability of the suggested mechanism.
From our point of view, our results indicate that stable
bidirectional flows are more easily realized by modifica-
tions of the filaments rather than interactions between
particles.
The importance of the MT structure on transport has

recently been pointed out [13–16]. Bidirectional intracellular
transport is organized on oppositely oriented filament bun-
dles in dendrites [15] and on parallel oriented MT doublets
in cilia [16]. In axons, however, so far a similar organization
of the MT network has not been identified. Our findings
indicate that the post-translational modification by motors
and self-induced preferential binding of one or the other
motor species could indeed lead to stable bidirectional
transport in an a prior unipolar MT network. A self-induced
amplification of the binding affinity must be given for both
particle species. Otherwise, the density of oppositely ori-
ented particles on the same filament is too high to realize
efficient transport states.
Concerning the robustness and efficiency of the pro-

posed lane formation in our model for intracellular trans-
port, it would be of great interest to obtain further insight to
the interplay between dynein and kinesin motors, micro-
tubules, and MAPS, which might have a strong impact on
the (self-)organization of intracellular transport.
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